Alternatives to Apache Kylin logo

Alternatives to Apache Kylin

Apache Spark, Presto, Druid, Amazon Athena, and Apache Flink are the most popular alternatives and competitors to Apache Kylin.
26
68
+ 1
11

What is Apache Kylin and what are its top alternatives?

Apache Kylin™ is an open source Distributed Analytics Engine designed to provide SQL interface and multi-dimensional analysis (OLAP) on Hadoop/Spark supporting extremely large datasets, originally contributed from eBay Inc.
Apache Kylin is a tool in the Big Data Tools category of a tech stack.
Apache Kylin is an open source tool with 2.6K GitHub stars and 1.2K GitHub forks. Here’s a link to Apache Kylin's open source repository on GitHub

Apache Kylin alternatives & related posts

related Apache Spark posts

Eric Colson
Eric Colson
Chief Algorithms Officer at Stitch Fix · | 19 upvotes · 883.4K views
atStitch FixStitch Fix
Kafka
Kafka
PostgreSQL
PostgreSQL
Amazon S3
Amazon S3
Apache Spark
Apache Spark
Presto
Presto
Python
Python
R Language
R Language
PyTorch
PyTorch
Docker
Docker
Amazon EC2 Container Service
Amazon EC2 Container Service
#AWS
#Etl
#ML
#DataScience
#DataStack
#Data

The algorithms and data infrastructure at Stitch Fix is housed in #AWS. Data acquisition is split between events flowing through Kafka, and periodic snapshots of PostgreSQL DBs. We store data in an Amazon S3 based data warehouse. Apache Spark on Yarn is our tool of choice for data movement and #ETL. Because our storage layer (s3) is decoupled from our processing layer, we are able to scale our compute environment very elastically. We have several semi-permanent, autoscaling Yarn clusters running to serve our data processing needs. While the bulk of our compute infrastructure is dedicated to algorithmic processing, we also implemented Presto for adhoc queries and dashboards.

Beyond data movement and ETL, most #ML centric jobs (e.g. model training and execution) run in a similarly elastic environment as containers running Python and R code on Amazon EC2 Container Service clusters. The execution of batch jobs on top of ECS is managed by Flotilla, a service we built in house and open sourced (see https://github.com/stitchfix/flotilla-os).

At Stitch Fix, algorithmic integrations are pervasive across the business. We have dozens of data products actively integrated systems. That requires serving layer that is robust, agile, flexible, and allows for self-service. Models produced on Flotilla are packaged for deployment in production using Khan, another framework we've developed internally. Khan provides our data scientists the ability to quickly productionize those models they've developed with open source frameworks in Python 3 (e.g. PyTorch, sklearn), by automatically packaging them as Docker containers and deploying to Amazon ECS. This provides our data scientist a one-click method of getting from their algorithms to production. We then integrate those deployments into a service mesh, which allows us to A/B test various implementations in our product.

For more info:

#DataScience #DataStack #Data

See more
Conor Myhrvold
Conor Myhrvold
Tech Brand Mgr, Office of CTO at Uber · | 7 upvotes · 450.8K views
atUber TechnologiesUber Technologies
Kafka
Kafka
Kafka Manager
Kafka Manager
Hadoop
Hadoop
Apache Spark
Apache Spark
GitHub
GitHub

Why we built Marmaray, an open source generic data ingestion and dispersal framework and library for Apache Hadoop :

Built and designed by our Hadoop Platform team, Marmaray is a plug-in-based framework built on top of the Hadoop ecosystem. Users can add support to ingest data from any source and disperse to any sink leveraging the use of Apache Spark . The name, Marmaray, comes from a tunnel in Turkey connecting Europe and Asia. Similarly, we envisioned Marmaray within Uber as a pipeline connecting data from any source to any sink depending on customer preference:

https://eng.uber.com/marmaray-hadoop-ingestion-open-source/

(Direct GitHub repo: https://github.com/uber/marmaray Kafka Kafka Manager )

See more
Presto logo

Presto

156
348
51
156
348
+ 1
51
Distributed SQL Query Engine for Big Data
Presto logo
Presto
VS
Apache Kylin logo
Apache Kylin

related Presto posts

Ashish Singh
Ashish Singh
Tech Lead, Big Data Platform at Pinterest · | 27 upvotes · 235.8K views
Apache Hive
Apache Hive
Presto
Presto
Amazon EC2
Amazon EC2
Amazon S3
Amazon S3
Kafka
Kafka
Kubernetes
Kubernetes
#DataScience
#DataEngineering
#AWS
#BigData

To provide employees with the critical need of interactive querying, we’ve worked with Presto, an open-source distributed SQL query engine, over the years. Operating Presto at Pinterest’s scale has involved resolving quite a few challenges like, supporting deeply nested and huge thrift schemas, slow/ bad worker detection and remediation, auto-scaling cluster, graceful cluster shutdown and impersonation support for ldap authenticator.

Our infrastructure is built on top of Amazon EC2 and we leverage Amazon S3 for storing our data. This separates compute and storage layers, and allows multiple compute clusters to share the S3 data.

We have hundreds of petabytes of data and tens of thousands of Apache Hive tables. Our Presto clusters are comprised of a fleet of 450 r4.8xl EC2 instances. Presto clusters together have over 100 TBs of memory and 14K vcpu cores. Within Pinterest, we have close to more than 1,000 monthly active users (out of total 1,600+ Pinterest employees) using Presto, who run about 400K queries on these clusters per month.

Each query submitted to Presto cluster is logged to a Kafka topic via Singer. Singer is a logging agent built at Pinterest and we talked about it in a previous post. Each query is logged when it is submitted and when it finishes. When a Presto cluster crashes, we will have query submitted events without corresponding query finished events. These events enable us to capture the effect of cluster crashes over time.

Each Presto cluster at Pinterest has workers on a mix of dedicated AWS EC2 instances and Kubernetes pods. Kubernetes platform provides us with the capability to add and remove workers from a Presto cluster very quickly. The best-case latency on bringing up a new worker on Kubernetes is less than a minute. However, when the Kubernetes cluster itself is out of resources and needs to scale up, it can take up to ten minutes. Some other advantages of deploying on Kubernetes platform is that our Presto deployment becomes agnostic of cloud vendor, instance types, OS, etc.

#BigData #AWS #DataScience #DataEngineering

See more
Eric Colson
Eric Colson
Chief Algorithms Officer at Stitch Fix · | 19 upvotes · 883.4K views
atStitch FixStitch Fix
Kafka
Kafka
PostgreSQL
PostgreSQL
Amazon S3
Amazon S3
Apache Spark
Apache Spark
Presto
Presto
Python
Python
R Language
R Language
PyTorch
PyTorch
Docker
Docker
Amazon EC2 Container Service
Amazon EC2 Container Service
#AWS
#Etl
#ML
#DataScience
#DataStack
#Data

The algorithms and data infrastructure at Stitch Fix is housed in #AWS. Data acquisition is split between events flowing through Kafka, and periodic snapshots of PostgreSQL DBs. We store data in an Amazon S3 based data warehouse. Apache Spark on Yarn is our tool of choice for data movement and #ETL. Because our storage layer (s3) is decoupled from our processing layer, we are able to scale our compute environment very elastically. We have several semi-permanent, autoscaling Yarn clusters running to serve our data processing needs. While the bulk of our compute infrastructure is dedicated to algorithmic processing, we also implemented Presto for adhoc queries and dashboards.

Beyond data movement and ETL, most #ML centric jobs (e.g. model training and execution) run in a similarly elastic environment as containers running Python and R code on Amazon EC2 Container Service clusters. The execution of batch jobs on top of ECS is managed by Flotilla, a service we built in house and open sourced (see https://github.com/stitchfix/flotilla-os).

At Stitch Fix, algorithmic integrations are pervasive across the business. We have dozens of data products actively integrated systems. That requires serving layer that is robust, agile, flexible, and allows for self-service. Models produced on Flotilla are packaged for deployment in production using Khan, another framework we've developed internally. Khan provides our data scientists the ability to quickly productionize those models they've developed with open source frameworks in Python 3 (e.g. PyTorch, sklearn), by automatically packaging them as Docker containers and deploying to Amazon ECS. This provides our data scientist a one-click method of getting from their algorithms to production. We then integrate those deployments into a service mesh, which allows us to A/B test various implementations in our product.

For more info:

#DataScience #DataStack #Data

See more
Druid logo

Druid

162
281
20
162
281
+ 1
20
Fast column-oriented distributed data store
Druid logo
Druid
VS
Apache Kylin logo
Apache Kylin

related Amazon Athena posts

Amazon Athena
Amazon Athena
Google BigQuery
Google BigQuery

I use Amazon Athena because similar to Google BigQuery , you can store and query data easily. Especially since you can define data schema in the Glue data catalog, there's a central way to define data models.

However, I would not recommend for batch jobs. I typically use this to check intermediary datasets in data engineering workloads. It's good for getting a look and feel of the data along its ETL journey.

See more
Google BigQuery
Google BigQuery
Amazon Redshift
Amazon Redshift
Amazon Athena
Amazon Athena
Amazon S3
Amazon S3

Hi all,

Currently, we need to ingest the data from Amazon S3 to DB either Amazon Athena or Amazon Redshift. But the problem with the data is, it is in .PSV (pipe separated values) format and the size is also above 200 GB. The query performance of the timeout in Athena/Redshift is not up to the mark, too slow while compared to Google BigQuery. How would I optimize the performance and query result time? Can anyone please help me out?

See more
Apache Flink logo

Apache Flink

201
263
11
201
263
+ 1
11
Fast and reliable large-scale data processing engine
Apache Flink logo
Apache Flink
VS
Apache Kylin logo
Apache Kylin

related Apache Flink posts

Surabhi Bhawsar
Surabhi Bhawsar
Technical Architect at Pepcus · | 6 upvotes · 369.7K views
Kafka
Kafka
Apache Flink
Apache Flink

I need to build the Alert & Notification framework with the use of a scheduled program. We will analyze the events from the database table and filter events that are falling under a day timespan and send these event messages over email. Currently, we are using Kafka Pub/Sub for messaging. The customer wants us to move on Apache Flink, I am trying to understand how Apache Flink could be fit better for us.

See more
Apache Hive logo

Apache Hive

171
126
0
171
126
+ 1
0
Data Warehouse Software for Reading, Writing, and Managing Large Datasets
    Be the first to leave a pro
    Apache Hive logo
    Apache Hive
    VS
    Apache Kylin logo
    Apache Kylin

    related Apache Hive posts

    Ashish Singh
    Ashish Singh
    Tech Lead, Big Data Platform at Pinterest · | 27 upvotes · 235.8K views
    Apache Hive
    Apache Hive
    Presto
    Presto
    Amazon EC2
    Amazon EC2
    Amazon S3
    Amazon S3
    Kafka
    Kafka
    Kubernetes
    Kubernetes
    #DataScience
    #DataEngineering
    #AWS
    #BigData

    To provide employees with the critical need of interactive querying, we’ve worked with Presto, an open-source distributed SQL query engine, over the years. Operating Presto at Pinterest’s scale has involved resolving quite a few challenges like, supporting deeply nested and huge thrift schemas, slow/ bad worker detection and remediation, auto-scaling cluster, graceful cluster shutdown and impersonation support for ldap authenticator.

    Our infrastructure is built on top of Amazon EC2 and we leverage Amazon S3 for storing our data. This separates compute and storage layers, and allows multiple compute clusters to share the S3 data.

    We have hundreds of petabytes of data and tens of thousands of Apache Hive tables. Our Presto clusters are comprised of a fleet of 450 r4.8xl EC2 instances. Presto clusters together have over 100 TBs of memory and 14K vcpu cores. Within Pinterest, we have close to more than 1,000 monthly active users (out of total 1,600+ Pinterest employees) using Presto, who run about 400K queries on these clusters per month.

    Each query submitted to Presto cluster is logged to a Kafka topic via Singer. Singer is a logging agent built at Pinterest and we talked about it in a previous post. Each query is logged when it is submitted and when it finishes. When a Presto cluster crashes, we will have query submitted events without corresponding query finished events. These events enable us to capture the effect of cluster crashes over time.

    Each Presto cluster at Pinterest has workers on a mix of dedicated AWS EC2 instances and Kubernetes pods. Kubernetes platform provides us with the capability to add and remove workers from a Presto cluster very quickly. The best-case latency on bringing up a new worker on Kubernetes is less than a minute. However, when the Kubernetes cluster itself is out of resources and needs to scale up, it can take up to ten minutes. Some other advantages of deploying on Kubernetes platform is that our Presto deployment becomes agnostic of cloud vendor, instance types, OS, etc.

    #BigData #AWS #DataScience #DataEngineering

    See more
    AWS Glue logo

    AWS Glue

    104
    179
    0
    104
    179
    + 1
    0
    Fully managed extract, transform, and load (ETL) service
      Be the first to leave a pro
      AWS Glue logo
      AWS Glue
      VS
      Apache Kylin logo
      Apache Kylin
      Apache Impala logo

      Apache Impala

      74
      103
      8
      74
      103
      + 1
      8
      Real-time Query for Hadoop
      Apache Impala logo
      Apache Impala
      VS
      Apache Kylin logo
      Apache Kylin