What is ClearDB and what are its top alternatives?
ClearDB is a Database-as-a-Service (DBaaS) provider that offers MySQL databases for cloud applications. It provides features like automated backups, high availability, and scalability. However, ClearDB has limitations such as limited storage options, expensive pricing, and lack of support for other database types.
- Amazon RDS: Amazon RDS is a managed database service that supports multiple database engines including MySQL, PostgreSQL, and SQL Server. It offers features like automated backups, high availability, and scalability. Pros: Flexible storage options, cost-effective pricing. Cons: May have a learning curve for beginners.
- Google Cloud SQL: Google Cloud SQL is a fully managed MySQL and PostgreSQL database service on Google Cloud Platform. It provides automatic backups, replication, and security features. Pros: Seamless integration with other Google Cloud services, pay-as-you-go pricing. Cons: Limited database engine support.
- Azure Database for MySQL: Azure Database for MySQL is a fully managed database service on Microsoft Azure. It offers automated backups, scaling, and monitoring capabilities. Pros: Integration with Azure ecosystem, high availability. Cons: Limited database engine support.
- Heroku Postgres: Heroku Postgres is a managed PostgreSQL database service with features like continuous protection, rollback, and follower databases. Pros: Easy to set up and use, seamless integration with Heroku platform. Cons: Limited to PostgreSQL databases.
- DigitalOcean Managed Databases: DigitalOcean Managed Databases offer fully managed database services for PostgreSQL, MySQL, and Redis. It includes automated backups, scaling options, and monitoring tools. Pros: Simple pricing, easy to get started. Cons: Limited to a few database options.
- IBM Db2 on Cloud: IBM Db2 on Cloud is a fully managed database service that supports Db2 and Oracle databases. It provides features like auto-scaling, encryption, and backup/restore functionality. Pros: Enterprise-grade security features, robust support. Cons: Higher pricing compared to other alternatives.
- CockroachDB: CockroachDB is a distributed SQL database that offers scalability, consistency, and resilience. It is open source and designed to handle large-scale, global applications. Pros: Resilient to failures, scalable architecture. Cons: Complex setup and maintenance.
- MariaDB SkySQL: MariaDB SkySQL is a DBaaS offering by MariaDB that supports MariaDB and MySQL databases. It includes features like automatic failover, point-in-time recovery, and performance monitoring. Pros: High availability options, competitive pricing. Cons: Limited database engine support.
- Aiven: Aiven is a managed cloud service provider that offers various open-source databases including PostgreSQL, MySQL, and Kafka. It provides features like automated backups, monitoring, and security controls. Pros: Multi-cloud support, easy to deploy. Cons: Pricing can be higher for large-scale deployments.
- ScaleGrid: ScaleGrid is a fully managed database service for MongoDB, Redis, MySQL, and PostgreSQL. It offers features like automated monitoring, backups, and scaling options. Pros: Customizable plans, advanced monitoring capabilities. Cons: Limited database options compared to other providers.
Top Alternatives to ClearDB
- MySQL
The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software. ...
- Heroku Postgres
Heroku Postgres provides a SQL database-as-a-service that lets you focus on building your application instead of messing around with database management. ...
- Firebase
Firebase is a cloud service designed to power real-time, collaborative applications. Simply add the Firebase library to your application to gain access to a shared data structure; any changes you make to that data are automatically synchronized with the Firebase cloud and with other clients within milliseconds. ...
- PostgreSQL
PostgreSQL is an advanced object-relational database management system that supports an extended subset of the SQL standard, including transactions, foreign keys, subqueries, triggers, user-defined types and functions. ...
- MongoDB
MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding. ...
- Redis
Redis is an open source (BSD licensed), in-memory data structure store, used as a database, cache, and message broker. Redis provides data structures such as strings, hashes, lists, sets, sorted sets with range queries, bitmaps, hyperloglogs, geospatial indexes, and streams. ...
- Amazon S3
Amazon Simple Storage Service provides a fully redundant data storage infrastructure for storing and retrieving any amount of data, at any time, from anywhere on the web ...
- GitHub Actions
It makes it easy to automate all your software workflows, now with world-class CI/CD. Build, test, and deploy your code right from GitHub. Make code reviews, branch management, and issue triaging work the way you want. ...
ClearDB alternatives & related posts
- Sql800
- Free679
- Easy562
- Widely used528
- Open source490
- High availability180
- Cross-platform support160
- Great community104
- Secure79
- Full-text indexing and searching75
- Fast, open, available26
- Reliable16
- SSL support16
- Robust15
- Enterprise Version9
- Easy to set up on all platforms7
- NoSQL access to JSON data type3
- Relational database1
- Easy, light, scalable1
- Sequel Pro (best SQL GUI)1
- Replica Support1
- Owned by a company with their own agenda16
- Can't roll back schema changes3
related MySQL posts
When I joined NYT there was already broad dissatisfaction with the LAMP (Linux Apache HTTP Server MySQL PHP) Stack and the front end framework, in particular. So, I wasn't passing judgment on it. I mean, LAMP's fine, you can do good work in LAMP. It's a little dated at this point, but it's not ... I didn't want to rip it out for its own sake, but everyone else was like, "We don't like this, it's really inflexible." And I remember from being outside the company when that was called MIT FIVE when it had launched. And been observing it from the outside, and I was like, you guys took so long to do that and you did it so carefully, and yet you're not happy with your decisions. Why is that? That was more the impetus. If we're going to do this again, how are we going to do it in a way that we're gonna get a better result?
So we're moving quickly away from LAMP, I would say. So, right now, the new front end is React based and using Apollo. And we've been in a long, protracted, gradual rollout of the core experiences.
React is now talking to GraphQL as a primary API. There's a Node.js back end, to the front end, which is mainly for server-side rendering, as well.
Behind there, the main repository for the GraphQL server is a big table repository, that we call Bodega because it's a convenience store. And that reads off of a Kafka pipeline.
We've been using PostgreSQL since the very early days of Zulip, but we actually didn't use it from the beginning. Zulip started out as a MySQL project back in 2012, because we'd heard it was a good choice for a startup with a wide community. However, we found that even though we were using the Django ORM for most of our database access, we spent a lot of time fighting with MySQL. Issues ranged from bad collation defaults, to bad query plans which required a lot of manual query tweaks.
We ended up getting so frustrated that we tried out PostgresQL, and the results were fantastic. We didn't have to do any real customization (just some tuning settings for how big a server we had), and all of our most important queries were faster out of the box. As a result, we were able to delete a bunch of custom queries escaping the ORM that we'd written to make the MySQL query planner happy (because postgres just did the right thing automatically).
And then after that, we've just gotten a ton of value out of postgres. We use its excellent built-in full-text search, which has helped us avoid needing to bring in a tool like Elasticsearch, and we've really enjoyed features like its partial indexes, which saved us a lot of work adding unnecessary extra tables to get good performance for things like our "unread messages" and "starred messages" indexes.
I can't recommend it highly enough.
Heroku Postgres
- Easy to setup29
- Follower databases3
- Dataclips for sharing queries3
- Extremely reliable3
- Super expensive2
related Heroku Postgres posts
PostgreSQL Heroku Heroku Postgres Node.js Knex.js
Last week we rolled out a simple patch that decimated the response time of a Postgres query crucial to Checkly. It quite literally went from an average of ~100ms with peaks to 1 second to a steady 1ms to 10ms.
However, that patch was just the last step of a longer journey:
I looked at what API endpoints were using which queries and how their response time grew over time. Specifically the customer facing API endpoints that are directly responsible for rendering the first dashboard page of the product are crucial.
I looked at the Heroku metrics such as those reported by
heroku pg:outlier
and cross references that with "slowest response time" statistics.I reproduced the production situation as best as possible on a local development machine and test my hypothesis that an composite index on a
uuid
field and atimestampz
field would reduce response times.
This method secured the victory and we rolled out a new index last week. Response times plummeted. Read the full story in the blog post.
I could spin up an Amazon EC2 instance and install PostgreSQL myself, review latest configuration best practices, sort Amazon EBS storage for data, set up a snapshot process etc.
Alternatively I could use Amazon RDS, Amazon RDS for PostgreSQL or Heroku Postgres and have most of that work handled for me, by a team of world experts...
- Realtime backend made easy371
- Fast and responsive270
- Easy setup242
- Real-time215
- JSON191
- Free134
- Backed by google128
- Angular adaptor83
- Reliable68
- Great customer support36
- Great documentation32
- Real-time synchronization25
- Mobile friendly21
- Rapid prototyping19
- Great security14
- Automatic scaling12
- Freakingly awesome11
- Super fast development8
- Angularfire is an amazing addition!8
- Chat8
- Firebase hosting6
- Built in user auth/oauth6
- Awesome next-gen backend6
- Ios adaptor6
- Speed of light4
- Very easy to use4
- Great3
- It's made development super fast3
- Brilliant for startups3
- Free hosting2
- Cloud functions2
- JS Offline and Sync suport2
- Low battery consumption2
- .net2
- The concurrent updates create a great experience2
- Push notification2
- I can quickly create static web apps with no backend2
- Great all-round functionality2
- Free authentication solution2
- Easy Reactjs integration1
- Google's support1
- Free SSL1
- CDN & cache out of the box1
- Easy to use1
- Large1
- Faster workflow1
- Serverless1
- Good Free Limits1
- Simple and easy1
- Can become expensive31
- No open source, you depend on external company16
- Scalability is not infinite15
- Not Flexible Enough9
- Cant filter queries7
- Very unstable server3
- No Relational Data3
- Too many errors2
- No offline sync2
related Firebase posts
Hi Otensia! I'd definitely recommend using the skills you've already got and building with JavaScript is a smart way to go these days. Most platform services have JavaScript/Node SDKs or NPM packages, many serverless platforms support Node in case you need to write any backend logic, and JavaScript is incredibly popular - meaning it will be easy to hire for, should you ever need to.
My advice would be "don't reinvent the wheel". If you already have a skill set that will work well to solve the problem at hand, and you don't need it for any other projects, don't spend the time jumping into a new language. If you're looking for an excuse to learn something new, it would be better to invest that time in learning a new platform/tool that compliments your knowledge of JavaScript. For this project, I might recommend using Netlify, Vercel, or Google Firebase to quickly and easily deploy your web app. If you need to add user authentication, there are great examples out there for Firebase Authentication, Auth0, or even Magic (a newcomer on the Auth scene, but very user friendly). All of these services work very well with a JavaScript-based application.
For inboxkitten.com, an opensource disposable email service;
We migrated our serverless workload from Cloud Functions for Firebase to CloudFlare workers, taking advantage of the lower cost and faster-performing edge computing of Cloudflare network. Made possible due to our extremely low CPU and RAM overhead of our serverless functions.
If I were to summarize the limitation of Cloudflare (as oppose to firebase/gcp functions), it would be ...
- <5ms CPU time limit
- Incompatible with express.js
- one script limitation per domain
Limitations our workload is able to conform with (YMMV)
For hosting of static files, we migrated from Firebase to CommonsHost
More details on the trade-off in between both serverless providers is in the article
- Relational database763
- High availability510
- Enterprise class database439
- Sql383
- Sql + nosql304
- Great community173
- Easy to setup147
- Heroku131
- Secure by default130
- Postgis113
- Supports Key-Value50
- Great JSON support48
- Cross platform34
- Extensible33
- Replication28
- Triggers26
- Multiversion concurrency control23
- Rollback23
- Open source21
- Heroku Add-on18
- Stable, Simple and Good Performance17
- Powerful15
- Lets be serious, what other SQL DB would you go for?13
- Good documentation11
- Scalable9
- Free8
- Reliable8
- Intelligent optimizer8
- Transactional DDL7
- Modern7
- One stop solution for all things sql no matter the os6
- Relational database with MVCC5
- Faster Development5
- Full-Text Search4
- Developer friendly4
- Excellent source code3
- Free version3
- Great DB for Transactional system or Application3
- Relational datanbase3
- search3
- Open-source3
- Text2
- Full-text2
- Can handle up to petabytes worth of size1
- Composability1
- Multiple procedural languages supported1
- Native0
- Table/index bloatings10
related PostgreSQL posts
Our whole DevOps stack consists of the following tools:
- GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
- Respectively Git as revision control system
- SourceTree as Git GUI
- Visual Studio Code as IDE
- CircleCI for continuous integration (automatize development process)
- Prettier / TSLint / ESLint as code linter
- SonarQube as quality gate
- Docker as container management (incl. Docker Compose for multi-container application management)
- VirtualBox for operating system simulation tests
- Kubernetes as cluster management for docker containers
- Heroku for deploying in test environments
- nginx as web server (preferably used as facade server in production environment)
- SSLMate (using OpenSSL) for certificate management
- Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
- PostgreSQL as preferred database system
- Redis as preferred in-memory database/store (great for caching)
The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:
- Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
- Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
- Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
- Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
- Scalability: All-in-one framework for distributed systems.
- Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.
We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient
Based on the above criteria, we selected the following tools to perform the end to end data replication:
We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.
We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.
In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.
Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.
In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!
- Document-oriented storage828
- No sql593
- Ease of use553
- Fast464
- High performance410
- Free255
- Open source218
- Flexible180
- Replication & high availability145
- Easy to maintain112
- Querying42
- Easy scalability39
- Auto-sharding38
- High availability37
- Map/reduce31
- Document database27
- Easy setup25
- Full index support25
- Reliable16
- Fast in-place updates15
- Agile programming, flexible, fast14
- No database migrations12
- Easy integration with Node.Js8
- Enterprise8
- Enterprise Support6
- Great NoSQL DB5
- Support for many languages through different drivers4
- Schemaless3
- Aggregation Framework3
- Drivers support is good3
- Fast2
- Managed service2
- Easy to Scale2
- Awesome2
- Consistent2
- Good GUI1
- Acid Compliant1
- Very slowly for connected models that require joins6
- Not acid compliant3
- Proprietary query language2
related MongoDB posts
Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.
We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient
Based on the above criteria, we selected the following tools to perform the end to end data replication:
We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.
We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.
In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.
Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.
In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!
We use MongoDB as our primary #datastore. Mongo's approach to replica sets enables some fantastic patterns for operations like maintenance, backups, and #ETL.
As we pull #microservices from our #monolith, we are taking the opportunity to build them with their own datastores using PostgreSQL. We also use Redis to cache data we’d never store permanently, and to rate-limit our requests to partners’ APIs (like GitHub).
When we’re dealing with large blobs of immutable data (logs, artifacts, and test results), we store them in Amazon S3. We handle any side-effects of S3’s eventual consistency model within our own code. This ensures that we deal with user requests correctly while writes are in process.
- Performance886
- Super fast542
- Ease of use513
- In-memory cache444
- Advanced key-value cache324
- Open source194
- Easy to deploy182
- Stable164
- Free155
- Fast121
- High-Performance42
- High Availability40
- Data Structures35
- Very Scalable32
- Replication24
- Great community22
- Pub/Sub22
- "NoSQL" key-value data store19
- Hashes16
- Sets13
- Sorted Sets11
- NoSQL10
- Lists10
- Async replication9
- BSD licensed9
- Bitmaps8
- Integrates super easy with Sidekiq for Rails background8
- Keys with a limited time-to-live7
- Open Source7
- Lua scripting6
- Strings6
- Awesomeness for Free5
- Hyperloglogs5
- Transactions4
- Outstanding performance4
- Runs server side LUA4
- LRU eviction of keys4
- Feature Rich4
- Written in ANSI C4
- Networked4
- Data structure server3
- Performance & ease of use3
- Dont save data if no subscribers are found2
- Automatic failover2
- Easy to use2
- Temporarily kept on disk2
- Scalable2
- Existing Laravel Integration2
- Channels concept2
- Object [key/value] size each 500 MB2
- Simple2
- Cannot query objects directly15
- No secondary indexes for non-numeric data types3
- No WAL1
related Redis posts
StackShare Feed is built entirely with React, Glamorous, and Apollo. One of our objectives with the public launch of the Feed was to enable a Server-side rendered (SSR) experience for our organic search traffic. When you visit the StackShare Feed, and you aren't logged in, you are delivered the Trending feed experience. We use an in-house Node.js rendering microservice to generate this HTML. This microservice needs to run and serve requests independent of our Rails web app. Up until recently, we had a mono-repo with our Rails and React code living happily together and all served from the same web process. In order to deploy our SSR app into a Heroku environment, we needed to split out our front-end application into a separate repo in GitHub. The driving factor in this decision was mostly due to limitations imposed by Heroku specifically with how processes can't communicate with each other. A new SSR app was created in Heroku and linked directly to the frontend repo so it stays in-sync with changes.
Related to this, we need a way to "deploy" our frontend changes to various server environments without building & releasing the entire Ruby application. We built a hybrid Amazon S3 Amazon CloudFront solution to host our Webpack bundles. A new CircleCI script builds the bundles and uploads them to S3. The final step in our rollout is to update some keys in Redis so our Rails app knows which bundles to serve. The result of these efforts were significant. Our frontend team now moves independently of our backend team, our build & release process takes only a few minutes, we are now using an edge CDN to serve JS assets, and we have pre-rendered React pages!
#StackDecisionsLaunch #SSR #Microservices #FrontEndRepoSplit
Our whole DevOps stack consists of the following tools:
- GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
- Respectively Git as revision control system
- SourceTree as Git GUI
- Visual Studio Code as IDE
- CircleCI for continuous integration (automatize development process)
- Prettier / TSLint / ESLint as code linter
- SonarQube as quality gate
- Docker as container management (incl. Docker Compose for multi-container application management)
- VirtualBox for operating system simulation tests
- Kubernetes as cluster management for docker containers
- Heroku for deploying in test environments
- nginx as web server (preferably used as facade server in production environment)
- SSLMate (using OpenSSL) for certificate management
- Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
- PostgreSQL as preferred database system
- Redis as preferred in-memory database/store (great for caching)
The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:
- Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
- Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
- Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
- Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
- Scalability: All-in-one framework for distributed systems.
- Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
Amazon S3
- Reliable590
- Scalable492
- Cheap456
- Simple & easy329
- Many sdks83
- Logical30
- Easy Setup13
- REST API11
- 1000+ POPs11
- Secure6
- Easy4
- Plug and play4
- Web UI for uploading files3
- Faster on response2
- Flexible2
- GDPR ready2
- Easy to use1
- Plug-gable1
- Easy integration with CloudFront1
- Permissions take some time to get right7
- Requires a credit card6
- Takes time/work to organize buckets & folders properly6
- Complex to set up3
related Amazon S3 posts
To provide employees with the critical need of interactive querying, we’ve worked with Presto, an open-source distributed SQL query engine, over the years. Operating Presto at Pinterest’s scale has involved resolving quite a few challenges like, supporting deeply nested and huge thrift schemas, slow/ bad worker detection and remediation, auto-scaling cluster, graceful cluster shutdown and impersonation support for ldap authenticator.
Our infrastructure is built on top of Amazon EC2 and we leverage Amazon S3 for storing our data. This separates compute and storage layers, and allows multiple compute clusters to share the S3 data.
We have hundreds of petabytes of data and tens of thousands of Apache Hive tables. Our Presto clusters are comprised of a fleet of 450 r4.8xl EC2 instances. Presto clusters together have over 100 TBs of memory and 14K vcpu cores. Within Pinterest, we have close to more than 1,000 monthly active users (out of total 1,600+ Pinterest employees) using Presto, who run about 400K queries on these clusters per month.
Each query submitted to Presto cluster is logged to a Kafka topic via Singer. Singer is a logging agent built at Pinterest and we talked about it in a previous post. Each query is logged when it is submitted and when it finishes. When a Presto cluster crashes, we will have query submitted events without corresponding query finished events. These events enable us to capture the effect of cluster crashes over time.
Each Presto cluster at Pinterest has workers on a mix of dedicated AWS EC2 instances and Kubernetes pods. Kubernetes platform provides us with the capability to add and remove workers from a Presto cluster very quickly. The best-case latency on bringing up a new worker on Kubernetes is less than a minute. However, when the Kubernetes cluster itself is out of resources and needs to scale up, it can take up to ten minutes. Some other advantages of deploying on Kubernetes platform is that our Presto deployment becomes agnostic of cloud vendor, instance types, OS, etc.
#BigData #AWS #DataScience #DataEngineering
StackShare Feed is built entirely with React, Glamorous, and Apollo. One of our objectives with the public launch of the Feed was to enable a Server-side rendered (SSR) experience for our organic search traffic. When you visit the StackShare Feed, and you aren't logged in, you are delivered the Trending feed experience. We use an in-house Node.js rendering microservice to generate this HTML. This microservice needs to run and serve requests independent of our Rails web app. Up until recently, we had a mono-repo with our Rails and React code living happily together and all served from the same web process. In order to deploy our SSR app into a Heroku environment, we needed to split out our front-end application into a separate repo in GitHub. The driving factor in this decision was mostly due to limitations imposed by Heroku specifically with how processes can't communicate with each other. A new SSR app was created in Heroku and linked directly to the frontend repo so it stays in-sync with changes.
Related to this, we need a way to "deploy" our frontend changes to various server environments without building & releasing the entire Ruby application. We built a hybrid Amazon S3 Amazon CloudFront solution to host our Webpack bundles. A new CircleCI script builds the bundles and uploads them to S3. The final step in our rollout is to update some keys in Redis so our Rails app knows which bundles to serve. The result of these efforts were significant. Our frontend team now moves independently of our backend team, our build & release process takes only a few minutes, we are now using an edge CDN to serve JS assets, and we have pre-rendered React pages!
#StackDecisionsLaunch #SSR #Microservices #FrontEndRepoSplit
- Integration with GitHub8
- Free5
- Easy to duplicate a workflow3
- Ready actions in Marketplace3
- Configs stored in .github2
- Docker Support2
- Read actions in Marketplace2
- Active Development Roadmap1
- Fast1
- Lacking [skip ci]5
- Lacking allow failure4
- Lacking job specific badges3
- No ssh login to servers2
- No Deployment Projects1
- No manual launch1
related GitHub Actions posts
I am in the process of evaluating CircleCI, Drone.io, and Github Actions to cover my #CI/ CD needs. I would appreciate your advice on comparative study w.r.t. attributes like language-Inclusive support, code-base integration, performance, cost, maintenance, support, ease of use, ability to deal with big projects, etc. based on actual industry experience.
Thanks in advance!
I have created a SaaS application. 1 backend service and 2 frontend services, all 3 run on different ports. I am using Amazon ECR images to deploy them on the EC2 server. My code is on GitHub. I want to automate this deployment process. How can I do this, and What tech stack should I use? It should be in sync with what I am currently using. On merge to master, it should build push the image to ECR and then later deploy again in the EC2 with the latest image. Maybe GitHub Actions or AWS CodePipeline would be ideal. Thanks, Shubham