Alternatives to Cloudify logo

Alternatives to Cloudify

Red Hat OpenShift, OpenStack, Kubernetes, Ansible, and Cloud Foundry are the most popular alternatives and competitors to Cloudify.
11
16
+ 1
0

What is Cloudify and what are its top alternatives?

Orchestrate real apps on the cloud with Cloudify, an open source application management framework that allows users to manage even the most complex apps by automating their DevOps processes.
Cloudify is a tool in the Platform as a Service category of a tech stack.

Top Alternatives to Cloudify

  • Red Hat OpenShift

    Red Hat OpenShift

    OpenShift is Red Hat's Cloud Computing Platform as a Service (PaaS) offering. OpenShift is an application platform in the cloud where application developers and teams can build, test, deploy, and run their applications. ...

  • OpenStack

    OpenStack

    OpenStack is a cloud operating system that controls large pools of compute, storage, and networking resources throughout a datacenter, all managed through a dashboard that gives administrators control while empowering their users to provision resources through a web interface. ...

  • Kubernetes

    Kubernetes

    Kubernetes is an open source orchestration system for Docker containers. It handles scheduling onto nodes in a compute cluster and actively manages workloads to ensure that their state matches the users declared intentions. ...

  • Ansible

    Ansible

    Ansible is an IT automation tool. It can configure systems, deploy software, and orchestrate more advanced IT tasks such as continuous deployments or zero downtime rolling updates. Ansible’s goals are foremost those of simplicity and maximum ease of use. ...

  • Cloud Foundry

    Cloud Foundry

    Cloud Foundry is an open platform as a service (PaaS) that provides a choice of clouds, developer frameworks, and application services. Cloud Foundry makes it faster and easier to build, test, deploy, and scale applications. ...

  • Terraform

    Terraform

    With Terraform, you describe your complete infrastructure as code, even as it spans multiple service providers. Your servers may come from AWS, your DNS may come from CloudFlare, and your database may come from Heroku. Terraform will build all these resources across all these providers in parallel. ...

  • Rancher

    Rancher

    Rancher is an open source container management platform that includes full distributions of Kubernetes, Apache Mesos and Docker Swarm, and makes it simple to operate container clusters on any cloud or infrastructure platform. ...

  • Docker

    Docker

    The Docker Platform is the industry-leading container platform for continuous, high-velocity innovation, enabling organizations to seamlessly build and share any application — from legacy to what comes next — and securely run them anywhere ...

Cloudify alternatives & related posts

Red Hat OpenShift logo

Red Hat OpenShift

1.2K
1.2K
480
Red Hat's free Platform as a Service (PaaS) for hosting Java, PHP, Ruby, Python, Node.js, and Perl apps
1.2K
1.2K
+ 1
480
PROS OF RED HAT OPENSHIFT
  • 97
    Good free plan
  • 61
    Open Source
  • 45
    Easy setup
  • 41
    Nodejs support
  • 39
    Well documented
  • 31
    Custom domains
  • 27
    Mongodb support
  • 26
    Clean and simple architecture
  • 24
    PHP support
  • 20
    Customizable environments
  • 10
    Ability to run CRON jobs
  • 8
    Easier than Heroku for a WordPress blog
  • 6
    PostgreSQL support
  • 6
    Autoscaling
  • 6
    Easy deployment
  • 6
    Good balance between Heroku and AWS for flexibility
  • 5
    Free, Easy Setup, Lot of Gear or D.I.Y Gear
  • 4
    Shell access to gears
  • 3
    Great Support
  • 2
    Overly complicated and over engineered in majority of e
  • 2
    Golang support
  • 2
    Its free and offer custom domain usage
  • 1
    Meteor support
  • 1
    Easy setup and great customer support
  • 1
    High Security
  • 1
    No credit card needed
  • 1
    because it is easy to manage
  • 1
    Logging & Metrics
  • 1
    Autoscaling at a good price point
  • 1
    Great free plan with excellent support
  • 1
    This is the only free one among the three as of today
CONS OF RED HAT OPENSHIFT
  • 2
    Decisions are made for you, limiting your options
  • 2
    License cost
  • 1
    Behind, sometimes severely, the upstreams

related Red Hat OpenShift posts

Conor Myhrvold
Tech Brand Mgr, Office of CTO at Uber · | 39 upvotes · 4.2M views

How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:

Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.

Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:

https://eng.uber.com/distributed-tracing/

(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)

Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark

See more
Michael Ionita

We use Kubernetes because we decided to migrate to a hosted cluster (not AWS) and still be able to scale our clusters up and down depending on load. By wrapping it with OpenShift we are now able to easily adapt to demand but also able to separate concerns into separate Pods depending on use-cases we have.

See more
OpenStack logo

OpenStack

639
933
110
Open source software for building private and public clouds
639
933
+ 1
110
PROS OF OPENSTACK
  • 45
    Private cloud
  • 36
    Avoid vendor lock-in
  • 19
    Flexible in use
  • 5
    Industry leader
  • 3
    Supported by many companies in top500
  • 2
    Robust architecture
CONS OF OPENSTACK
    Be the first to leave a con

    related OpenStack posts

    Kubernetes logo

    Kubernetes

    38.8K
    32.9K
    626
    Manage a cluster of Linux containers as a single system to accelerate Dev and simplify Ops
    38.8K
    32.9K
    + 1
    626
    PROS OF KUBERNETES
    • 158
      Leading docker container management solution
    • 124
      Simple and powerful
    • 101
      Open source
    • 75
      Backed by google
    • 56
      The right abstractions
    • 24
      Scale services
    • 18
      Replication controller
    • 9
      Permission managment
    • 7
      Simple
    • 7
      Supports autoscaling
    • 6
      Cheap
    • 4
      Self-healing
    • 4
      Reliable
    • 4
      No cloud platform lock-in
    • 3
      Open, powerful, stable
    • 3
      Scalable
    • 3
      Quick cloud setup
    • 3
      Promotes modern/good infrascture practice
    • 2
      Backed by Red Hat
    • 2
      Runs on azure
    • 2
      Cloud Agnostic
    • 2
      Custom and extensibility
    • 2
      Captain of Container Ship
    • 2
      A self healing environment with rich metadata
    • 1
      Golang
    • 1
      Easy setup
    • 1
      Everything of CaaS
    • 1
      Sfg
    • 1
      Expandable
    • 1
      Gke
    CONS OF KUBERNETES
    • 13
      Poor workflow for development
    • 11
      Steep learning curve
    • 5
      Orchestrates only infrastructure
    • 2
      High resource requirements for on-prem clusters

    related Kubernetes posts

    Conor Myhrvold
    Tech Brand Mgr, Office of CTO at Uber · | 39 upvotes · 4.2M views

    How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:

    Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.

    Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:

    https://eng.uber.com/distributed-tracing/

    (GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)

    Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark

    See more
    Yshay Yaacobi

    Our first experience with .NET core was when we developed our OSS feature management platform - Tweek (https://github.com/soluto/tweek). We wanted to create a solution that is able to run anywhere (super important for OSS), has excellent performance characteristics and can fit in a multi-container architecture. We decided to implement our rule engine processor in F# , our main service was implemented in C# and other components were built using JavaScript / TypeScript and Go.

    Visual Studio Code worked really well for us as well, it worked well with all our polyglot services and the .Net core integration had great cross-platform developer experience (to be fair, F# was a bit trickier) - actually, each of our team members used a different OS (Ubuntu, macos, windows). Our production deployment ran for a time on Docker Swarm until we've decided to adopt Kubernetes with almost seamless migration process.

    After our positive experience of running .Net core workloads in containers and developing Tweek's .Net services on non-windows machines, C# had gained back some of its popularity (originally lost to Node.js), and other teams have been using it for developing microservices, k8s sidecars (like https://github.com/Soluto/airbag), cli tools, serverless functions and other projects...

    See more
    Ansible logo

    Ansible

    14K
    11.2K
    1.3K
    Radically simple configuration-management, application deployment, task-execution, and multi-node orchestration engine
    14K
    11.2K
    + 1
    1.3K
    PROS OF ANSIBLE
    • 276
      Agentless
    • 204
      Great configuration
    • 195
      Simple
    • 173
      Powerful
    • 151
      Easy to learn
    • 66
      Flexible
    • 54
      Doesn't get in the way of getting s--- done
    • 34
      Makes sense
    • 29
      Super efficient and flexible
    • 27
      Powerful
    • 11
      Dynamic Inventory
    • 8
      Backed by Red Hat
    • 7
      Works with AWS
    • 6
      Cloud Oriented
    • 6
      Easy to maintain
    • 4
      Because SSH
    • 4
      Multi language
    • 4
      Easy
    • 4
      Simple
    • 4
      Procedural or declarative, or both
    • 4
      Simple and powerful
    • 3
      Consistency
    • 3
      Vagrant provisioner
    • 2
      Fast as hell
    • 2
      Masterless
    • 2
      Well-documented
    • 2
      Merge hash to get final configuration similar to hiera
    • 2
      Debugging is simple
    • 1
      Work on windows, but difficult to manage
    • 1
      Certified Content
    CONS OF ANSIBLE
    • 5
      Dangerous
    • 5
      Hard to install
    • 3
      Bloated
    • 3
      Backward compatibility
    • 2
      Doesn't Run on Windows
    • 2
      No immutable infrastructure

    related Ansible posts

    Tymoteusz Paul
    Devops guy at X20X Development LTD · | 23 upvotes · 4.6M views

    Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

    It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

    I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

    We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

    If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

    The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

    Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

    See more
    Sebastian Gębski

    Heroku was a decent choice to start a business, but at some point our platform was too big, too complex & too heterogenic, so Heroku started to be a constraint, not a benefit. First, we've started containerizing our apps with Docker to eliminate "works in my machine" syndrome & uniformize the environment setup. The first orchestration was composed with Docker Compose , but at some point it made sense to move it to Kubernetes. Fortunately, we've made a very good technical decision when starting our work with containers - all the container configuration & provisions HAD (since the beginning) to be done in code (Infrastructure as Code) - we've used Terraform & Ansible for that (correspondingly). This general trend of containerisation was accompanied by another, parallel & equally big project: migrating environments from Heroku to AWS: using Amazon EC2 , Amazon EKS, Amazon S3 & Amazon RDS.

    See more
    Cloud Foundry logo

    Cloud Foundry

    153
    285
    5
    Deploy and scale applications in seconds on your choice of private or public cloud
    153
    285
    + 1
    5
    PROS OF CLOUD FOUNDRY
    • 2
      Perfectly aligned with springboot
    • 1
      Free distributed tracing (zipkin)
    • 1
      Application health management
    • 1
      Free service discovery (Eureka)
    CONS OF CLOUD FOUNDRY
      Be the first to leave a con

      related Cloud Foundry posts

      Terraform logo

      Terraform

      11.2K
      8.3K
      320
      Describe your complete infrastructure as code and build resources across providers
      11.2K
      8.3K
      + 1
      320
      PROS OF TERRAFORM
      • 109
        Infrastructure as code
      • 72
        Declarative syntax
      • 44
        Planning
      • 27
        Simple
      • 24
        Parallelism
      • 7
        Cloud agnostic
      • 6
        Well-documented
      • 6
        It's like coding your infrastructure in simple English
      • 4
        Automates infrastructure deployments
      • 4
        Immutable infrastructure
      • 4
        Platform agnostic
      • 3
        Extendable
      • 3
        Automation
      • 3
        Portability
      • 2
        Lightweight
      • 2
        Scales to hundreds of hosts
      CONS OF TERRAFORM
      • 1
        Doesn't have full support to GKE

      related Terraform posts

      Context: I wanted to create an end to end IoT data pipeline simulation in Google Cloud IoT Core and other GCP services. I never touched Terraform meaningfully until working on this project, and it's one of the best explorations in my development career. The documentation and syntax is incredibly human-readable and friendly. I'm used to building infrastructure through the google apis via Python , but I'm so glad past Sung did not make that decision. I was tempted to use Google Cloud Deployment Manager, but the templates were a bit convoluted by first impression. I'm glad past Sung did not make this decision either.

      Solution: Leveraging Google Cloud Build Google Cloud Run Google Cloud Bigtable Google BigQuery Google Cloud Storage Google Compute Engine along with some other fun tools, I can deploy over 40 GCP resources using Terraform!

      Check Out My Architecture: CLICK ME

      Check out the GitHub repo attached

      See more
      Emanuel Evans
      Senior Architect at Rainforest QA · | 16 upvotes · 697.9K views

      We recently moved our main applications from Heroku to Kubernetes . The 3 main driving factors behind the switch were scalability (database size limits), security (the inability to set up PostgreSQL instances in private networks), and costs (GCP is cheaper for raw computing resources).

      We prefer using managed services, so we are using Google Kubernetes Engine with Google Cloud SQL for PostgreSQL for our PostgreSQL databases and Google Cloud Memorystore for Redis . For our CI/CD pipeline, we are using CircleCI and Google Cloud Build to deploy applications managed with Helm . The new infrastructure is managed with Terraform .

      Read the blog post to go more in depth.

      See more
      Rancher logo

      Rancher

      804
      1.2K
      644
      Open Source Platform for Running a Private Container Service
      804
      1.2K
      + 1
      644
      PROS OF RANCHER
      • 103
        Easy to use
      • 79
        Open source and totally free
      • 63
        Multi-host docker-compose support
      • 58
        Load balancing and health check included
      • 58
        Simple
      • 44
        Rolling upgrades, green/blue upgrades feature
      • 42
        Dns and service discovery out-of-the-box
      • 37
        Only requires docker
      • 34
        Multitenant and permission management
      • 29
        Easy to use and feature rich
      • 11
        Cross cloud compatible
      • 11
        Does everything needed for a docker infrastructure
      • 8
        Simple and powerful
      • 8
        Next-gen platform
      • 7
        Very Docker-friendly
      • 6
        Support Kubernetes and Swarm
      • 6
        Application catalogs with stack templates (wizards)
      • 6
        Supports Apache Mesos, Docker Swarm, and Kubernetes
      • 6
        Rolling and blue/green upgrades deployments
      • 6
        High Availability service: keeps your app up 24/7
      • 5
        Easy to use service catalog
      • 4
        Very intuitive UI
      • 4
        IaaS-vendor independent, supports hybrid/multi-cloud
      • 4
        Awesome support
      • 3
        Scalable
      • 2
        Requires less infrastructure requirements
      CONS OF RANCHER
      • 8
        Hosting Rancher can be complicated

      related Rancher posts

      Docker logo

      Docker

      114.7K
      91.5K
      3.8K
      Enterprise Container Platform for High-Velocity Innovation.
      114.7K
      91.5K
      + 1
      3.8K
      PROS OF DOCKER
      • 821
        Rapid integration and build up
      • 688
        Isolation
      • 517
        Open source
      • 505
        Testa­bil­i­ty and re­pro­ducibil­i­ty
      • 459
        Lightweight
      • 217
        Standardization
      • 182
        Scalable
      • 105
        Upgrading / down­grad­ing / ap­pli­ca­tion versions
      • 86
        Security
      • 84
        Private paas environments
      • 33
        Portability
      • 25
        Limit resource usage
      • 15
        I love the way docker has changed virtualization
      • 15
        Game changer
      • 12
        Fast
      • 11
        Concurrency
      • 7
        Docker's Compose tools
      • 4
        Fast and Portable
      • 4
        Easy setup
      • 4
        Because its fun
      • 3
        Makes shipping to production very simple
      • 2
        It's dope
      • 1
        Highly useful
      • 1
        MacOS support FAKE
      • 1
        Its cool
      • 1
        Docker hub for the FTW
      • 1
        Very easy to setup integrate and build
      • 1
        Package the environment with the application
      • 1
        Does a nice job hogging memory
      • 1
        Open source and highly configurable
      • 1
        Simplicity, isolation, resource effective
      CONS OF DOCKER
      • 7
        New versions == broken features
      • 5
        Documentation not always in sync
      • 5
        Unreliable networking
      • 3
        Moves quickly
      • 2
        Not Secure

      related Docker posts

      Simon Reymann
      Senior Fullstack Developer at QUANTUSflow Software GmbH · | 28 upvotes · 3.3M views

      Our whole DevOps stack consists of the following tools:

      • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
      • Respectively Git as revision control system
      • SourceTree as Git GUI
      • Visual Studio Code as IDE
      • CircleCI for continuous integration (automatize development process)
      • Prettier / TSLint / ESLint as code linter
      • SonarQube as quality gate
      • Docker as container management (incl. Docker Compose for multi-container application management)
      • VirtualBox for operating system simulation tests
      • Kubernetes as cluster management for docker containers
      • Heroku for deploying in test environments
      • nginx as web server (preferably used as facade server in production environment)
      • SSLMate (using OpenSSL) for certificate management
      • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
      • PostgreSQL as preferred database system
      • Redis as preferred in-memory database/store (great for caching)

      The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

      • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
      • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
      • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
      • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
      • Scalability: All-in-one framework for distributed systems.
      • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
      See more
      Tymoteusz Paul
      Devops guy at X20X Development LTD · | 23 upvotes · 4.6M views

      Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

      It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

      I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

      We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

      If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

      The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

      Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

      See more