What is Deis and what are its top alternatives?
Top Alternatives to Deis
- Flynn
Flynn lets you deploy apps with git push and containers. Developers can deploy any app to any cluster in seconds. ...
- Helm
Helm is the best way to find, share, and use software built for Kubernetes.
- NGINX
nginx [engine x] is an HTTP and reverse proxy server, as well as a mail proxy server, written by Igor Sysoev. According to Netcraft nginx served or proxied 30.46% of the top million busiest sites in Jan 2018. ...
- Apache HTTP Server
The Apache HTTP Server is a powerful and flexible HTTP/1.1 compliant web server. Originally designed as a replacement for the NCSA HTTP Server, it has grown to be the most popular web server on the Internet. ...
- Amazon EC2
It is a web service that provides resizable compute capacity in the cloud. It is designed to make web-scale computing easier for developers. ...
- Firebase
Firebase is a cloud service designed to power real-time, collaborative applications. Simply add the Firebase library to your application to gain access to a shared data structure; any changes you make to that data are automatically synchronized with the Firebase cloud and with other clients within milliseconds. ...
- Amazon Web Services (AWS)
It is a comprehensive and broadly adopted cloud platform, offering over 200 fully featured services from data centers globally. ...
- Heroku
Heroku is a cloud application platform – a new way of building and deploying web apps. Heroku lets app developers spend 100% of their time on their application code, not managing servers, deployment, ongoing operations, or scaling. ...
Deis alternatives & related posts
- Free6
- Supports few types of containers:libvirt-lxc, docker5
- PostgreSQL HA2
- Easy setup2
- 12-factor methodology1
related Flynn posts
- Infrastructure as code8
- Open source6
- Easy setup2
- Support1
- Testability and reproducibility1
related Helm posts
We recently moved our main applications from Heroku to Kubernetes . The 3 main driving factors behind the switch were scalability (database size limits), security (the inability to set up PostgreSQL instances in private networks), and costs (GCP is cheaper for raw computing resources).
We prefer using managed services, so we are using Google Kubernetes Engine with Google Cloud SQL for PostgreSQL for our PostgreSQL databases and Google Cloud Memorystore for Redis . For our CI/CD pipeline, we are using CircleCI and Google Cloud Build to deploy applications managed with Helm . The new infrastructure is managed with Terraform .
Read the blog post to go more in depth.
We began our hosting journey, as many do, on Heroku because they make it easy to deploy your application and automate some of the routine tasks associated with deployments, etc. However, as our team grew and our product matured, our needs have outgrown Heroku. I will dive into the history and reasons for this in a future blog post.
We decided to migrate our infrastructure to Kubernetes running on Amazon EKS. Although Google Kubernetes Engine has a slightly more mature Kubernetes offering and is more user-friendly; we decided to go with EKS because we already using other AWS services (including a previous migration from Heroku Postgres to AWS RDS). We are still in the process of moving our main website workloads to EKS, however we have successfully migrate all our staging and testing PR apps to run in a staging cluster. We developed a Slack chatops application (also running in the cluster) which automates all the common tasks of spinning up and managing a production-like cluster for a pull request. This allows our engineering team to iterate quickly and safely test code in a full production environment. Helm plays a central role when deploying our staging apps into the cluster. We use CircleCI to build docker containers for each PR push, which are then published to Amazon EC2 Container Service (ECR). An upgrade-operator
process watches the ECR repository for new containers and then uses Helm to rollout updates to the staging environments. All this happens automatically and makes it really easy for developers to get code onto servers quickly. The immutable and isolated nature of our staging environments means that we can do anything we want in that environment and quickly re-create or restore the environment to start over.
The next step in our journey is to migrate our production workloads to an EKS cluster and build out the CD workflows to get our containers promoted to that cluster after our QA testing is complete in our staging environments.
NGINX
- High-performance http server1.4K
- Performance894
- Easy to configure730
- Open source607
- Load balancer530
- Free289
- Scalability288
- Web server226
- Simplicity175
- Easy setup136
- Content caching30
- Web Accelerator21
- Capability15
- Fast14
- High-latency12
- Predictability12
- Reverse Proxy8
- The best of them7
- Supports http/27
- Great Community5
- Lots of Modules5
- Enterprise version5
- High perfomance proxy server4
- Embedded Lua scripting3
- Streaming media delivery3
- Streaming media3
- Reversy Proxy3
- Blash2
- GRPC-Web2
- Lightweight2
- Fast and easy to set up2
- Slim2
- saltstack2
- Virtual hosting1
- Narrow focus. Easy to configure. Fast1
- Along with Redis Cache its the Most superior1
- Ingress controller1
- Advanced features require subscription10
related NGINX posts
Our whole DevOps stack consists of the following tools:
- GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
- Respectively Git as revision control system
- SourceTree as Git GUI
- Visual Studio Code as IDE
- CircleCI for continuous integration (automatize development process)
- Prettier / TSLint / ESLint as code linter
- SonarQube as quality gate
- Docker as container management (incl. Docker Compose for multi-container application management)
- VirtualBox for operating system simulation tests
- Kubernetes as cluster management for docker containers
- Heroku for deploying in test environments
- nginx as web server (preferably used as facade server in production environment)
- SSLMate (using OpenSSL) for certificate management
- Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
- PostgreSQL as preferred database system
- Redis as preferred in-memory database/store (great for caching)
The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:
- Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
- Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
- Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
- Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
- Scalability: All-in-one framework for distributed systems.
- Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
We chose AWS because, at the time, it was really the only cloud provider to choose from.
We tend to use their basic building blocks (EC2, ELB, Amazon S3, Amazon RDS) rather than vendor specific components like databases and queuing. We deliberately decided to do this to ensure we could provide multi-cloud support or potentially move to another cloud provider if the offering was better for our customers.
We’ve utilized c3.large nodes for both the Node.js deployment and then for the .NET Core deployment. Both sit as backends behind an nginx instance and are managed using scaling groups in Amazon EC2 sitting behind a standard AWS Elastic Load Balancing (ELB).
While we’re satisfied with AWS, we do review our decision each year and have looked at Azure and Google Cloud offerings.
#CloudHosting #WebServers #CloudStorage #LoadBalancerReverseProxy
Apache HTTP Server
- Web server479
- Most widely-used web server305
- Virtual hosting217
- Fast148
- Ssl support138
- Since 199644
- Asynchronous28
- Robust5
- Proven over many years4
- Mature2
- Perfomance2
- Perfect Support1
- Many available modules0
- Many available modules0
- Hard to set up4
related Apache HTTP Server posts
When I joined NYT there was already broad dissatisfaction with the LAMP (Linux Apache HTTP Server MySQL PHP) Stack and the front end framework, in particular. So, I wasn't passing judgment on it. I mean, LAMP's fine, you can do good work in LAMP. It's a little dated at this point, but it's not ... I didn't want to rip it out for its own sake, but everyone else was like, "We don't like this, it's really inflexible." And I remember from being outside the company when that was called MIT FIVE when it had launched. And been observing it from the outside, and I was like, you guys took so long to do that and you did it so carefully, and yet you're not happy with your decisions. Why is that? That was more the impetus. If we're going to do this again, how are we going to do it in a way that we're gonna get a better result?
So we're moving quickly away from LAMP, I would say. So, right now, the new front end is React based and using Apollo. And we've been in a long, protracted, gradual rollout of the core experiences.
React is now talking to GraphQL as a primary API. There's a Node.js back end, to the front end, which is mainly for server-side rendering, as well.
Behind there, the main repository for the GraphQL server is a big table repository, that we call Bodega because it's a convenience store. And that reads off of a Kafka pipeline.
We've been happy with nginx as part of our stack. As an open source web application that folks install on-premise, the configuration system for the webserver is pretty important to us. I have a few complaints (e.g. the configuration syntax for conditionals is a pain), but overall we've found it pretty easy to build a configurable set of options (see link) for how to run Zulip on nginx, both directly and with a remote reverse proxy in front of it, with a minimum of code duplication.
Certainly I've been a lot happier with it than I was working with Apache HTTP Server in past projects.
- Quick and reliable cloud servers647
- Scalability515
- Easy management393
- Low cost277
- Auto-scaling271
- Market leader89
- Backed by amazon80
- Reliable79
- Free tier67
- Easy management, scalability58
- Flexible13
- Easy to Start10
- Widely used9
- Web-scale9
- Elastic9
- Node.js API7
- Industry Standard5
- Lots of configuration options4
- GPU instances2
- Simpler to understand and learn1
- Extremely simple to use1
- Amazing for individuals1
- All the Open Source CLI tools you could want.1
- Ui could use a lot of work13
- High learning curve when compared to PaaS6
- Extremely poor CPU performance3
related Amazon EC2 posts
To provide employees with the critical need of interactive querying, we’ve worked with Presto, an open-source distributed SQL query engine, over the years. Operating Presto at Pinterest’s scale has involved resolving quite a few challenges like, supporting deeply nested and huge thrift schemas, slow/ bad worker detection and remediation, auto-scaling cluster, graceful cluster shutdown and impersonation support for ldap authenticator.
Our infrastructure is built on top of Amazon EC2 and we leverage Amazon S3 for storing our data. This separates compute and storage layers, and allows multiple compute clusters to share the S3 data.
We have hundreds of petabytes of data and tens of thousands of Apache Hive tables. Our Presto clusters are comprised of a fleet of 450 r4.8xl EC2 instances. Presto clusters together have over 100 TBs of memory and 14K vcpu cores. Within Pinterest, we have close to more than 1,000 monthly active users (out of total 1,600+ Pinterest employees) using Presto, who run about 400K queries on these clusters per month.
Each query submitted to Presto cluster is logged to a Kafka topic via Singer. Singer is a logging agent built at Pinterest and we talked about it in a previous post. Each query is logged when it is submitted and when it finishes. When a Presto cluster crashes, we will have query submitted events without corresponding query finished events. These events enable us to capture the effect of cluster crashes over time.
Each Presto cluster at Pinterest has workers on a mix of dedicated AWS EC2 instances and Kubernetes pods. Kubernetes platform provides us with the capability to add and remove workers from a Presto cluster very quickly. The best-case latency on bringing up a new worker on Kubernetes is less than a minute. However, when the Kubernetes cluster itself is out of resources and needs to scale up, it can take up to ten minutes. Some other advantages of deploying on Kubernetes platform is that our Presto deployment becomes agnostic of cloud vendor, instance types, OS, etc.
#BigData #AWS #DataScience #DataEngineering
Our whole DevOps stack consists of the following tools:
- GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
- Respectively Git as revision control system
- SourceTree as Git GUI
- Visual Studio Code as IDE
- CircleCI for continuous integration (automatize development process)
- Prettier / TSLint / ESLint as code linter
- SonarQube as quality gate
- Docker as container management (incl. Docker Compose for multi-container application management)
- VirtualBox for operating system simulation tests
- Kubernetes as cluster management for docker containers
- Heroku for deploying in test environments
- nginx as web server (preferably used as facade server in production environment)
- SSLMate (using OpenSSL) for certificate management
- Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
- PostgreSQL as preferred database system
- Redis as preferred in-memory database/store (great for caching)
The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:
- Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
- Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
- Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
- Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
- Scalability: All-in-one framework for distributed systems.
- Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
- Realtime backend made easy371
- Fast and responsive270
- Easy setup242
- Real-time215
- JSON191
- Free134
- Backed by google128
- Angular adaptor83
- Reliable68
- Great customer support36
- Great documentation32
- Real-time synchronization25
- Mobile friendly21
- Rapid prototyping19
- Great security14
- Automatic scaling12
- Freakingly awesome11
- Super fast development8
- Angularfire is an amazing addition!8
- Chat8
- Firebase hosting6
- Built in user auth/oauth6
- Awesome next-gen backend6
- Ios adaptor6
- Speed of light4
- Very easy to use4
- Great3
- It's made development super fast3
- Brilliant for startups3
- Free hosting2
- Cloud functions2
- JS Offline and Sync suport2
- Low battery consumption2
- .net2
- The concurrent updates create a great experience2
- Push notification2
- I can quickly create static web apps with no backend2
- Great all-round functionality2
- Free authentication solution2
- Easy Reactjs integration1
- Google's support1
- Free SSL1
- CDN & cache out of the box1
- Easy to use1
- Large1
- Faster workflow1
- Serverless1
- Good Free Limits1
- Simple and easy1
- Can become expensive31
- No open source, you depend on external company16
- Scalability is not infinite15
- Not Flexible Enough9
- Cant filter queries7
- Very unstable server3
- No Relational Data3
- Too many errors2
- No offline sync2
related Firebase posts
Hi Otensia! I'd definitely recommend using the skills you've already got and building with JavaScript is a smart way to go these days. Most platform services have JavaScript/Node SDKs or NPM packages, many serverless platforms support Node in case you need to write any backend logic, and JavaScript is incredibly popular - meaning it will be easy to hire for, should you ever need to.
My advice would be "don't reinvent the wheel". If you already have a skill set that will work well to solve the problem at hand, and you don't need it for any other projects, don't spend the time jumping into a new language. If you're looking for an excuse to learn something new, it would be better to invest that time in learning a new platform/tool that compliments your knowledge of JavaScript. For this project, I might recommend using Netlify, Vercel, or Google Firebase to quickly and easily deploy your web app. If you need to add user authentication, there are great examples out there for Firebase Authentication, Auth0, or even Magic (a newcomer on the Auth scene, but very user friendly). All of these services work very well with a JavaScript-based application.
For inboxkitten.com, an opensource disposable email service;
We migrated our serverless workload from Cloud Functions for Firebase to CloudFlare workers, taking advantage of the lower cost and faster-performing edge computing of Cloudflare network. Made possible due to our extremely low CPU and RAM overhead of our serverless functions.
If I were to summarize the limitation of Cloudflare (as oppose to firebase/gcp functions), it would be ...
- <5ms CPU time limit
- Incompatible with express.js
- one script limitation per domain
Limitations our workload is able to conform with (YMMV)
For hosting of static files, we migrated from Firebase to CommonsHost
More details on the trade-off in between both serverless providers is in the article
related Amazon Web Services (AWS) posts
I want to make application like Zomato, #Foodpanda.
Which stack is best for this? As I have expertise in Java and Angular. What is the best stack you will recommend?
Web Micro-service / Mono? Angular / React? Amazon Web Services (AWS) / Google Cloud Platform? DB : SQL or No SQL
Mob Cross-platform: React Native / Flutter
Note: We are a team of 5. what languages do you recommend if I go with microservices?
Thanks
Hello everyone, I would like to start using a cloud service to host my projects, which are web applications. If anyone has enough experience with Microsoft Azure, Amazon Web Services (AWS) or Google Cloud Platform, I would like to know which of these is most recommended to use, depending on the features they have or how used they are. Thank you so much.
Heroku
- Easy deployment703
- Free for side projects459
- Huge time-saver374
- Simple scaling348
- Low devops skills required261
- Easy setup190
- Add-ons for almost everything174
- Beginner friendly153
- Better for startups150
- Low learning curve133
- Postgres hosting48
- Easy to add collaborators41
- Faster development30
- Awesome documentation24
- Simple rollback19
- Focus on product, not deployment19
- Natural companion for rails development15
- Easy integration15
- Great customer support12
- GitHub integration8
- Painless & well documented6
- No-ops6
- I love that they make it free to launch a side project4
- Free4
- Great UI3
- Just works3
- PostgreSQL forking and following2
- MySQL extension2
- Security1
- Able to host stuff good like Discord Bot1
- Sec0
- Super expensive27
- Not a whole lot of flexibility9
- No usable MySQL option7
- Storage7
- Low performance on free tier5
- 24/7 support is $1,000 per month2
related Heroku posts
StackShare Feed is built entirely with React, Glamorous, and Apollo. One of our objectives with the public launch of the Feed was to enable a Server-side rendered (SSR) experience for our organic search traffic. When you visit the StackShare Feed, and you aren't logged in, you are delivered the Trending feed experience. We use an in-house Node.js rendering microservice to generate this HTML. This microservice needs to run and serve requests independent of our Rails web app. Up until recently, we had a mono-repo with our Rails and React code living happily together and all served from the same web process. In order to deploy our SSR app into a Heroku environment, we needed to split out our front-end application into a separate repo in GitHub. The driving factor in this decision was mostly due to limitations imposed by Heroku specifically with how processes can't communicate with each other. A new SSR app was created in Heroku and linked directly to the frontend repo so it stays in-sync with changes.
Related to this, we need a way to "deploy" our frontend changes to various server environments without building & releasing the entire Ruby application. We built a hybrid Amazon S3 Amazon CloudFront solution to host our Webpack bundles. A new CircleCI script builds the bundles and uploads them to S3. The final step in our rollout is to update some keys in Redis so our Rails app knows which bundles to serve. The result of these efforts were significant. Our frontend team now moves independently of our backend team, our build & release process takes only a few minutes, we are now using an edge CDN to serve JS assets, and we have pre-rendered React pages!
#StackDecisionsLaunch #SSR #Microservices #FrontEndRepoSplit
Our whole DevOps stack consists of the following tools:
- GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
- Respectively Git as revision control system
- SourceTree as Git GUI
- Visual Studio Code as IDE
- CircleCI for continuous integration (automatize development process)
- Prettier / TSLint / ESLint as code linter
- SonarQube as quality gate
- Docker as container management (incl. Docker Compose for multi-container application management)
- VirtualBox for operating system simulation tests
- Kubernetes as cluster management for docker containers
- Heroku for deploying in test environments
- nginx as web server (preferably used as facade server in production environment)
- SSLMate (using OpenSSL) for certificate management
- Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
- PostgreSQL as preferred database system
- Redis as preferred in-memory database/store (great for caching)
The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:
- Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
- Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
- Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
- Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
- Scalability: All-in-one framework for distributed systems.
- Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.