What is Memgraph and what are its top alternatives?
Top Alternatives to Memgraph
- Neo4j
Neo4j stores data in nodes connected by directed, typed relationships with properties on both, also known as a Property Graph. It is a high performance graph store with all the features expected of a mature and robust database, like a friendly query language and ACID transactions. ...
- Redis
Redis is an open source (BSD licensed), in-memory data structure store, used as a database, cache, and message broker. Redis provides data structures such as strings, hashes, lists, sets, sorted sets with range queries, bitmaps, hyperloglogs, geospatial indexes, and streams. ...
- Dgraph
Dgraph's goal is to provide Google production level scale and throughput, with low enough latency to be serving real time user queries, over terabytes of structured data. Dgraph supports GraphQL-like query syntax, and responds in JSON and Protocol Buffers over GRPC and HTTP. ...
- JanusGraph
It is a scalable graph database optimized for storing and querying graphs containing hundreds of billions of vertices and edges distributed across a multi-machine cluster. It is a transactional database that can support thousands of concurrent users executing complex graph traversals in real time. ...
- Titan
Titan is a scalable graph database optimized for storing and querying graphs containing hundreds of billions of vertices and edges distributed across a multi-machine cluster. Titan is a transactional database that can support thousands of concurrent users executing complex graph traversals in real time. ...
- RedisGraph
RedisGraph is a graph database developed from scratch on top of Redis, using the new Redis Modules API to extend Redis with new commands and capabilities. Its main features include: - Simple, fast indexing and querying - Data stored in RAM, using memory-efficient custom data structures - On disk persistence - Tabular result sets - Simple and popular graph query language (Cypher) - Data Filtering, Aggregation and ordering ...
- Cayley
Cayley is an open-source graph inspired by the graph database behind Freebase and Google's Knowledge Graph. Its goal is to be a part of the developer's toolbox where Linked Data and graph-shaped data (semantic webs, social networks, etc) in general are concerned. ...
- TypeDB
TypeDB is a database with a rich and logical type system. TypeDB empowers you to solve complex problems, using TypeQL as its query language. ...
Memgraph alternatives & related posts
- Cypher – graph query language70
- Great graphdb61
- Open source32
- Rest api31
- High-Performance Native API27
- ACID24
- Easy setup21
- Great support17
- Clustering11
- Hot Backups9
- Great Web Admin UI8
- Powerful, flexible data model7
- Mature7
- Embeddable6
- Easy to Use and Model5
- Highly-available4
- Best Graphdb4
- Used by Crunchbase2
- Great onboarding process2
- It's awesome, I wanted to try it2
- Great query language and built in data browser2
- Comparably slow5
- Can't store a vertex as JSON4
- Doesn't have a managed cloud service at low cost1
related Neo4j posts
We have an in-house build experiment management system. We produce samples as input to the next step, which then could produce 1 sample(1-1) and many samples (1 - many). There are many steps like this. So far, we are tracking genealogy (limited tracking) in the MySQL database, which is becoming hard to trace back to the original material or sample(I can give more details if required). So, we are considering a Graph database. I am requesting advice from the experts.
- Is a graph database the right choice, or can we manage with RDBMS?
- If RDBMS, which RDMS, which feature, or which approach could make this manageable or sustainable
- If Graph database(Neo4j, OrientDB, Azure Cosmos DB, Amazon Neptune, ArangoDB), which one is good, and what are the best practices?
I am sorry that this might be a loaded question.
I'm evaluating the use of RedisGraph vs Microsoft SQL Server 2019 graph features to build a social graph. One of the key criteria is high availability and cross data center replication of data. While Neo4j is a much-matured solution in general, I'm not accounting for it due to the cost & introduction of a new stack in the ecosystem. Also, due to the nature of data & org policies, using a cloud-based solution won't be a viable choice.
We currently use Redis as a cache & SQL server 2019 as RDBMS.
I'm inclining towards SQL server 2019 graph as we already use SQL server extensively as relational database & have all the HA and cross data center replication setup readily available. I still need to evaluate if it fulfills our need as a graph DB though, I also learned that SQL server 2019 is still a new player in the market and attempts to fit a graph-like query on top of a relational model (with node and edge tables). RedisGraph seems very promising. However, I'm not totally sure about HA, Graph data backup, cross-data center support.
- Performance879
- Super fast536
- Ease of use511
- In-memory cache441
- Advanced key-value cache321
- Open source190
- Easy to deploy179
- Stable163
- Free152
- Fast120
- High-Performance40
- High Availability39
- Data Structures34
- Very Scalable32
- Replication23
- Great community20
- Pub/Sub19
- "NoSQL" key-value data store17
- Hashes14
- Sets12
- Sorted Sets10
- Lists9
- BSD licensed8
- NoSQL8
- Async replication7
- Integrates super easy with Sidekiq for Rails background7
- Bitmaps7
- Open Source6
- Keys with a limited time-to-live6
- Strings5
- Lua scripting5
- Awesomeness for Free!4
- Hyperloglogs4
- outstanding performance3
- Runs server side LUA3
- Networked3
- LRU eviction of keys3
- Written in ANSI C3
- Feature Rich3
- Transactions3
- Data structure server2
- Performance & ease of use2
- Existing Laravel Integration1
- Automatic failover1
- Easy to use1
- Object [key/value] size each 500 MB1
- Simple1
- Channels concept1
- Scalable1
- Temporarily kept on disk1
- Dont save data if no subscribers are found1
- Jk0
- Cannot query objects directly14
- No secondary indexes for non-numeric data types2
- No WAL1
related Redis posts
We use MongoDB as our primary #datastore. Mongo's approach to replica sets enables some fantastic patterns for operations like maintenance, backups, and #ETL.
As we pull #microservices from our #monolith, we are taking the opportunity to build them with their own datastores using PostgreSQL. We also use Redis to cache data we’d never store permanently, and to rate-limit our requests to partners’ APIs (like GitHub).
When we’re dealing with large blobs of immutable data (logs, artifacts, and test results), we store them in Amazon S3. We handle any side-effects of S3’s eventual consistency model within our own code. This ensures that we deal with user requests correctly while writes are in process.
















I'm working as one of the engineering leads in RunaHR. As our platform is a Saas, we thought It'd be good to have an API (We chose Ruby and Rails for this) and a SPA (built with React and Redux ) connected. We started the SPA with Create React App since It's pretty easy to start.
We use Jest as the testing framework and react-testing-library to test React components. In Rails we make tests using RSpec.
Our main database is PostgreSQL, but we also use MongoDB to store some type of data. We started to use Redis for cache and other time sensitive operations.
We have a couple of extra projects: One is an Employee app built with React Native and the other is an internal back office dashboard built with Next.js for the client and Python in the backend side.
Since we have different frontend apps we have found useful to have Bit to document visual components and utils in JavaScript.
- Graphql as a query language is nice if you like apollo3
- Easy set up2
- Low learning curve2
- Open Source1
- High Performance1
related Dgraph posts
related JanusGraph posts
related Titan posts
- 10x – 600x faster than any other graph database2
- Cypher – graph query language2
- Great graphdb1
- Open source1
related RedisGraph posts
I'm evaluating the use of RedisGraph vs Microsoft SQL Server 2019 graph features to build a social graph. One of the key criteria is high availability and cross data center replication of data. While Neo4j is a much-matured solution in general, I'm not accounting for it due to the cost & introduction of a new stack in the ecosystem. Also, due to the nature of data & org policies, using a cloud-based solution won't be a viable choice.
We currently use Redis as a cache & SQL server 2019 as RDBMS.
I'm inclining towards SQL server 2019 graph as we already use SQL server extensively as relational database & have all the HA and cross data center replication setup readily available. I still need to evaluate if it fulfills our need as a graph DB though, I also learned that SQL server 2019 is still a new player in the market and attempts to fit a graph-like query on top of a relational model (with node and edge tables). RedisGraph seems very promising. However, I'm not totally sure about HA, Graph data backup, cross-data center support.
- Full open source6