Alternatives to Packer logo

Alternatives to Packer

Docker, Terraform, Vagrant, Ansible, and AWS CloudFormation are the most popular alternatives and competitors to Packer.
522
468
+ 1
42

What is Packer and what are its top alternatives?

Packer automates the creation of any type of machine image. It embraces modern configuration management by encouraging you to use automated scripts to install and configure the software within your Packer-made images.
Packer is a tool in the Infrastructure Build Tools category of a tech stack.
Packer is an open source tool with 13.3K GitHub stars and 3.2K GitHub forks. Here’s a link to Packer's open source repository on GitHub

Top Alternatives to Packer

  • Docker

    Docker

    The Docker Platform is the industry-leading container platform for continuous, high-velocity innovation, enabling organizations to seamlessly build and share any application — from legacy to what comes next — and securely run them anywhere ...

  • Terraform

    Terraform

    With Terraform, you describe your complete infrastructure as code, even as it spans multiple service providers. Your servers may come from AWS, your DNS may come from CloudFlare, and your database may come from Heroku. Terraform will build all these resources across all these providers in parallel. ...

  • Vagrant

    Vagrant

    Vagrant provides the framework and configuration format to create and manage complete portable development environments. These development environments can live on your computer or in the cloud, and are portable between Windows, Mac OS X, and Linux. ...

  • Ansible

    Ansible

    Ansible is an IT automation tool. It can configure systems, deploy software, and orchestrate more advanced IT tasks such as continuous deployments or zero downtime rolling updates. Ansible’s goals are foremost those of simplicity and maximum ease of use. ...

  • AWS CloudFormation

    AWS CloudFormation

    You can use AWS CloudFormation’s sample templates or create your own templates to describe the AWS resources, and any associated dependencies or runtime parameters, required to run your application. You don’t need to figure out the order in which AWS services need to be provisioned or the subtleties of how to make those dependencies work. ...

  • Pulumi

    Pulumi

    Pulumi is a cloud development platform that makes creating cloud programs easy and productive. Skip the YAML and just write code. Pulumi is multi-language, multi-cloud and fully extensible in both its engine and ecosystem of packages. ...

  • AWS Cloud Development Kit

    AWS Cloud Development Kit

    It is an open source software development framework to model and provision your cloud application resources using familiar programming languages. It uses the familiarity and expressive power of programming languages for modeling your applications. It provides you with high-level components that preconfigure cloud resources with proven defaults, so you can build cloud applications without needing to be an expert. ...

  • GeoEngineer

    GeoEngineer

    GeoEngineer uses Terraform to plan and execute changes, so the DSL to describe resources is similar to Terraform's. GeoEngineer's DSL also provides programming and object oriented features like inheritance, abstraction, branching and looping. ...

Packer alternatives & related posts

Docker logo

Docker

115.9K
92.3K
3.8K
Enterprise Container Platform for High-Velocity Innovation.
115.9K
92.3K
+ 1
3.8K
PROS OF DOCKER
  • 821
    Rapid integration and build up
  • 688
    Isolation
  • 517
    Open source
  • 505
    Testa­bil­i­ty and re­pro­ducibil­i­ty
  • 459
    Lightweight
  • 217
    Standardization
  • 182
    Scalable
  • 105
    Upgrading / down­grad­ing / ap­pli­ca­tion versions
  • 86
    Security
  • 84
    Private paas environments
  • 33
    Portability
  • 25
    Limit resource usage
  • 15
    I love the way docker has changed virtualization
  • 15
    Game changer
  • 12
    Fast
  • 11
    Concurrency
  • 7
    Docker's Compose tools
  • 4
    Fast and Portable
  • 4
    Easy setup
  • 4
    Because its fun
  • 3
    Makes shipping to production very simple
  • 2
    It's dope
  • 1
    Highly useful
  • 1
    MacOS support FAKE
  • 1
    Its cool
  • 1
    Docker hub for the FTW
  • 1
    Very easy to setup integrate and build
  • 1
    Package the environment with the application
  • 1
    Does a nice job hogging memory
  • 1
    Open source and highly configurable
  • 1
    Simplicity, isolation, resource effective
CONS OF DOCKER
  • 7
    New versions == broken features
  • 5
    Documentation not always in sync
  • 5
    Unreliable networking
  • 3
    Moves quickly
  • 2
    Not Secure

related Docker posts

Simon Reymann
Senior Fullstack Developer at QUANTUSflow Software GmbH · | 28 upvotes · 3.3M views

Our whole DevOps stack consists of the following tools:

  • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
  • Respectively Git as revision control system
  • SourceTree as Git GUI
  • Visual Studio Code as IDE
  • CircleCI for continuous integration (automatize development process)
  • Prettier / TSLint / ESLint as code linter
  • SonarQube as quality gate
  • Docker as container management (incl. Docker Compose for multi-container application management)
  • VirtualBox for operating system simulation tests
  • Kubernetes as cluster management for docker containers
  • Heroku for deploying in test environments
  • nginx as web server (preferably used as facade server in production environment)
  • SSLMate (using OpenSSL) for certificate management
  • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
  • PostgreSQL as preferred database system
  • Redis as preferred in-memory database/store (great for caching)

The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

  • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
  • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
  • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
  • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
  • Scalability: All-in-one framework for distributed systems.
  • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
See more
Tymoteusz Paul
Devops guy at X20X Development LTD · | 23 upvotes · 4.7M views

Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

See more
Terraform logo

Terraform

11.4K
8.4K
320
Describe your complete infrastructure as code and build resources across providers
11.4K
8.4K
+ 1
320
PROS OF TERRAFORM
  • 109
    Infrastructure as code
  • 72
    Declarative syntax
  • 44
    Planning
  • 27
    Simple
  • 24
    Parallelism
  • 7
    Cloud agnostic
  • 6
    Well-documented
  • 6
    It's like coding your infrastructure in simple English
  • 4
    Automates infrastructure deployments
  • 4
    Immutable infrastructure
  • 4
    Platform agnostic
  • 3
    Extendable
  • 3
    Automation
  • 3
    Portability
  • 2
    Lightweight
  • 2
    Scales to hundreds of hosts
CONS OF TERRAFORM
  • 1
    Doesn't have full support to GKE

related Terraform posts

Context: I wanted to create an end to end IoT data pipeline simulation in Google Cloud IoT Core and other GCP services. I never touched Terraform meaningfully until working on this project, and it's one of the best explorations in my development career. The documentation and syntax is incredibly human-readable and friendly. I'm used to building infrastructure through the google apis via Python , but I'm so glad past Sung did not make that decision. I was tempted to use Google Cloud Deployment Manager, but the templates were a bit convoluted by first impression. I'm glad past Sung did not make this decision either.

Solution: Leveraging Google Cloud Build Google Cloud Run Google Cloud Bigtable Google BigQuery Google Cloud Storage Google Compute Engine along with some other fun tools, I can deploy over 40 GCP resources using Terraform!

Check Out My Architecture: CLICK ME

Check out the GitHub repo attached

See more
Emanuel Evans
Senior Architect at Rainforest QA · | 16 upvotes · 706.8K views

We recently moved our main applications from Heroku to Kubernetes . The 3 main driving factors behind the switch were scalability (database size limits), security (the inability to set up PostgreSQL instances in private networks), and costs (GCP is cheaper for raw computing resources).

We prefer using managed services, so we are using Google Kubernetes Engine with Google Cloud SQL for PostgreSQL for our PostgreSQL databases and Google Cloud Memorystore for Redis . For our CI/CD pipeline, we are using CircleCI and Google Cloud Build to deploy applications managed with Helm . The new infrastructure is managed with Terraform .

Read the blog post to go more in depth.

See more
Vagrant logo

Vagrant

8.5K
6.2K
1.5K
A tool for building and distributing development environments
8.5K
6.2K
+ 1
1.5K
PROS OF VAGRANT
  • 352
    Development environments
  • 291
    Simple bootstraping
  • 238
    Free
  • 139
    Boxes
  • 132
    Provisioning
  • 84
    Portable
  • 81
    Synced folders
  • 69
    Reproducible
  • 51
    Ssh
  • 44
    Very flexible
  • 5
    Works well, can be replicated easily with other devs
  • 5
    Easy-to-share, easy-to-version dev configuration
  • 3
    Great
  • 2
    Quick way to get running
  • 2
    Just works
  • 1
    What is vagrant?
  • 1
    Container Friendly
  • 1
    DRY - "Do Not Repeat Yourself"
  • 1
    Good documentation
CONS OF VAGRANT
  • 2
    Can become v complex w prod. provisioner (Salt, etc.)
  • 2
    Multiple VMs quickly eat up disk space
  • 1
    Development environment that kills your battery

related Vagrant posts

Tymoteusz Paul
Devops guy at X20X Development LTD · | 23 upvotes · 4.7M views

Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

See more
Tim Abbott
Shared insights
on
VirtualBoxVirtualBoxVagrantVagrantZulipZulip
at

We use VirtualBox primarily as a Vagrant provider for macOS for the Zulip development environment. It's totally reasonable software for providing a convenient virtual machine setup on macOS (and for debugging when things go wrong, which is mostly how we use it since the Vagrant provider for macOS just works).

See more
Ansible logo

Ansible

14.1K
11.3K
1.3K
Radically simple configuration-management, application deployment, task-execution, and multi-node orchestration engine
14.1K
11.3K
+ 1
1.3K
PROS OF ANSIBLE
  • 276
    Agentless
  • 204
    Great configuration
  • 195
    Simple
  • 173
    Powerful
  • 151
    Easy to learn
  • 66
    Flexible
  • 54
    Doesn't get in the way of getting s--- done
  • 34
    Makes sense
  • 29
    Super efficient and flexible
  • 27
    Powerful
  • 11
    Dynamic Inventory
  • 8
    Backed by Red Hat
  • 7
    Works with AWS
  • 6
    Cloud Oriented
  • 6
    Easy to maintain
  • 4
    Because SSH
  • 4
    Multi language
  • 4
    Easy
  • 4
    Simple
  • 4
    Procedural or declarative, or both
  • 4
    Simple and powerful
  • 3
    Consistency
  • 3
    Vagrant provisioner
  • 2
    Fast as hell
  • 2
    Masterless
  • 2
    Well-documented
  • 2
    Merge hash to get final configuration similar to hiera
  • 2
    Debugging is simple
  • 1
    Work on windows, but difficult to manage
  • 1
    Certified Content
CONS OF ANSIBLE
  • 5
    Dangerous
  • 5
    Hard to install
  • 3
    Bloated
  • 3
    Backward compatibility
  • 2
    Doesn't Run on Windows
  • 2
    No immutable infrastructure

related Ansible posts

Tymoteusz Paul
Devops guy at X20X Development LTD · | 23 upvotes · 4.7M views

Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

See more
Sebastian Gębski

Heroku was a decent choice to start a business, but at some point our platform was too big, too complex & too heterogenic, so Heroku started to be a constraint, not a benefit. First, we've started containerizing our apps with Docker to eliminate "works in my machine" syndrome & uniformize the environment setup. The first orchestration was composed with Docker Compose , but at some point it made sense to move it to Kubernetes. Fortunately, we've made a very good technical decision when starting our work with containers - all the container configuration & provisions HAD (since the beginning) to be done in code (Infrastructure as Code) - we've used Terraform & Ansible for that (correspondingly). This general trend of containerisation was accompanied by another, parallel & equally big project: migrating environments from Heroku to AWS: using Amazon EC2 , Amazon EKS, Amazon S3 & Amazon RDS.

See more
AWS CloudFormation logo

AWS CloudFormation

1.4K
1.1K
87
Create and manage a collection of related AWS resources
1.4K
1.1K
+ 1
87
PROS OF AWS CLOUDFORMATION
  • 42
    Automates infrastructure deployments
  • 21
    Declarative infrastructure and deployment
  • 13
    No more clicking around
  • 3
    Any Operative System you want
  • 3
    Infrastructure as code
  • 3
    Atomic
  • 1
    Automates Infrastructure Deployment
  • 1
    CDK makes it truly infrastructure-as-code
CONS OF AWS CLOUDFORMATION
  • 4
    Brittle
  • 2
    No RBAC and policies in templates

related AWS CloudFormation posts

Joseph Kunzler
DevOps Engineer at Tillable · | 9 upvotes · 140.7K views

We use Terraform because we needed a way to automate the process of building and deploying feature branches. We wanted to hide the complexity such that when a dev creates a PR, it triggers a build and deployment without the dev having to worry about any of the 'plumbing' going on behind the scenes. Terraform allows us to automate the process of provisioning DNS records, Amazon S3 buckets, Amazon EC2 instances and AWS Elastic Load Balancing (ELB)'s. It also makes it easy to tear it all down when finished. We also like that it supports multiple clouds, which is why we chose to use it over AWS CloudFormation.

See more

I use Terraform because it hits the level of abstraction pocket of being high-level and flexible, and is agnostic to cloud platforms. Creating complex infrastructure components for a solution with a UI console is tedious to repeat. Using low-level APIs are usually specific to cloud platforms, and you still have to build your own tooling for deploying, state management, and destroying infrastructure.

However, Terraform is usually slower to implement new services compared to cloud-specific APIs. It's worth the trade-off though, especially if you're multi-cloud. I heard someone say, "We want to preference a cloud, not lock in to one." Terraform builds on that claim.

Terraform Google Cloud Deployment Manager AWS CloudFormation

See more
Pulumi logo

Pulumi

115
196
14
Modern Infrastructure as Code
115
196
+ 1
14
PROS OF PULUMI
  • 5
    Infrastructure as code with less pain
  • 3
    Best-in-class kubernetes support
  • 1
    Can use many languages
  • 1
    Can be self-hosted
  • 1
    Built-in secret management
  • 1
    Simple
  • 1
    Multi-cloud
  • 1
    Great CLI
CONS OF PULUMI
    Be the first to leave a con

    related Pulumi posts

    AWS Cloud Development Kit logo

    AWS Cloud Development Kit

    74
    43
    0
    A framework for defining cloud infrastructure in code
    74
    43
    + 1
    0
    PROS OF AWS CLOUD DEVELOPMENT KIT
      Be the first to leave a pro
      CONS OF AWS CLOUD DEVELOPMENT KIT
        Be the first to leave a con

        related AWS Cloud Development Kit posts

        GeoEngineer logo

        GeoEngineer

        52
        63
        0
        Ruby DSL and DSL (geo) to codify then plan and execute changes to cloud resources, by Coinbase
        52
        63
        + 1
        0
        PROS OF GEOENGINEER
          Be the first to leave a pro
          CONS OF GEOENGINEER
            Be the first to leave a con

            related GeoEngineer posts