What is SBT and what are its top alternatives?
Top Alternatives to SBT
- Gradle
Gradle is a build tool with a focus on build automation and support for multi-language development. If you are building, testing, publishing, and deploying software on any platform, Gradle offers a flexible model that can support the entire development lifecycle from compiling and packaging code to publishing web sites. ...
- Apache Maven
Maven allows a project to build using its project object model (POM) and a set of plugins that are shared by all projects using Maven, providing a uniform build system. Once you familiarize yourself with how one Maven project builds you automatically know how all Maven projects build saving you immense amounts of time when trying to navigate many projects. ...
- Scala
Scala is an acronym for “Scalable Language”. This means that Scala grows with you. You can play with it by typing one-line expressions and observing the results. But you can also rely on it for large mission critical systems, as many companies, including Twitter, LinkedIn, or Intel do. To some, Scala feels like a scripting language. Its syntax is concise and low ceremony; its types get out of the way because the compiler can infer them. ...
- Bazel
Bazel is a build tool that builds code quickly and reliably. It is used to build the majority of Google's software, and thus it has been designed to handle build problems present in Google's development environment. ...
- Mill
It is your shiny new Java/Scala build tool. It aims for simplicity by re-using concepts you are already familiar with, borrowing ideas from modern tools like Bazel, to let you build your projects in a way that's simple, fast, and predictable. ...
- CMake
It is used to control the software compilation process using simple platform and compiler independent configuration files, and generate native makefiles and workspaces that can be used in the compiler environment of the user's choice. ...
- Sonatype Nexus
It is an open source repository that supports many artifact formats, including Docker, Java™ and npm. With the Nexus tool integration, pipelines in your toolchain can publish and retrieve versioned apps and their dependencies ...
SBT alternatives & related posts
- Flexibility110
- Easy to use51
- Groovy dsl47
- Slow build time22
- Crazy memory leaks10
- Fast incremental builds8
- Kotlin DSL5
- Windows Support1
- Inactionnable documentation8
- It is just the mess of Ant++6
- Hard to decide: ten or more ways to achieve one goal4
- Bad Eclipse tooling2
- Dependency on groovy2
related Gradle posts
We use Apache Maven because it is a standard. Gradle is very good alternative, but Gradle doesn't provide any advantage for our project. Gradle is slower (without running daemon), need more resources and a learning curve is quite big. Our project can not use a great flexibility of Gradle. On the other hand, Maven is well-know tool integrated in many IDEs, Dockers and so on.
Java JavaScript Node.js nginx Ubuntu MongoDB Amazon EC2 Redis Amazon S3 AWS Lambda RabbitMQ Kafka MySQL Spring Boot Dropwizard Vue.js Flutter
UtilitiesGoogle Analytics Elasticsearch Amazon Route 53
DevOpsGitHub Docker Webpack CircleCI Jenkins Travis CI Gradle Apache Maven
Cooperation ToolsJira notion.so Trello
- Performance68
- Low-level49
- Portability35
- Hardware level28
- Embedded apps19
- Pure13
- Performance of assembler9
- Ubiquity8
- Great for embedded6
- Old4
- Compiles quickly3
- OpenMP2
- No garbage collection to slow it down2
- Gnu/linux interoperable1
- Low-level5
- No built in support for concurrency3
- Lack of type safety2
- No built in support for parallelism (e.g. map-reduce)2
related C lang posts
Why Uber developed H3, our open source grid system to make geospatial data visualization and exploration easier and more efficient:
We decided to create H3 to combine the benefits of a hexagonal global grid system with a hierarchical indexing system. A global grid system usually requires at least two things: a map projection and a grid laid on top of the map. For map projection, we chose to use gnomonic projections centered on icosahedron faces. This projects from Earth as a sphere to an icosahedron, a twenty-sided platonic solid. The H3 grid is constructed by laying out 122 base cells over the Earth, with ten cells per face. H3 supports sixteen resolutions: https://eng.uber.com/h3/
(GitHub Pages : https://uber.github.io/h3/#/ Written in C w/ bindings in Java & JavaScript )
One important decision for delivering a platform independent solution with low memory footprint and minimal dependencies was the choice of the programming language. We considered a few from Python (there was already a reasonably large Python code base at Thumbtack), to Go (we were taking our first steps with it), and even Rust (too immature at the time).
We ended up writing it in C. It was easy to meet all requirements with only one external dependency for implementing the web server, clearly no challenges running it on any of the Linux distributions we were maintaining, and arguably the implementation with the smallest memory footprint given the choices above.
- Dependency management137
- Necessary evil70
- I’d rather code my app, not my build60
- Publishing packaged artifacts48
- Convention over configuration43
- Modularisation18
- Consistency across builds11
- Prevents overengineering using scripting6
- Runs Tests4
- Lot of cool plugins4
- Extensible3
- Hard to customize2
- Runs on Linux2
- Runs on OS X1
- Slow incremental build1
- Inconsistent buillds1
- Undeterminisc1
- Good IDE tooling1
- Complex6
- Inconsistent buillds1
- Not many plugin-alternatives0
related Apache Maven posts
Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).
It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up
or vagrant reload
we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.
I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up
, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.
We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.
If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.
The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).
Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.
We use Apache Maven because it is a standard. Gradle is very good alternative, but Gradle doesn't provide any advantage for our project. Gradle is slower (without running daemon), need more resources and a learning curve is quite big. Our project can not use a great flexibility of Gradle. On the other hand, Maven is well-know tool integrated in many IDEs, Dockers and so on.
- Static typing187
- Pattern-matching178
- Jvm177
- Scala is fun172
- Types138
- Concurrency95
- Actor library88
- Solve functional problems86
- Open source81
- Solve concurrency in a safer way80
- Functional44
- Fast24
- Generics23
- It makes me a better engineer18
- Syntactic sugar17
- Scalable13
- First-class functions10
- Type safety10
- Interactive REPL9
- Expressive8
- SBT7
- Case classes6
- Implicit parameters6
- Rapid and Safe Development using Functional Programming4
- JVM, OOP and Functional programming, and static typing4
- Object-oriented4
- Used by Twitter4
- Functional Proframming3
- Spark2
- Beautiful Code2
- Safety2
- Growing Community2
- DSL1
- Rich Static Types System and great Concurrency support1
- Naturally enforce high code quality1
- Akka Streams1
- Akka1
- Reactive Streams1
- Easy embedded DSLs1
- Mill build tool1
- Freedom to choose the right tools for a job0
- Slow compilation time11
- Multiple ropes and styles to hang your self7
- Too few developers available6
- Complicated subtyping4
- My coworkers using scala are racist against other stuff2
related Scala posts
I am new to Apache Spark and Scala both. I am basically a Java developer and have around 10 years of experience in Java.
I wish to work on some Machine learning or AI tech stacks. Please assist me in the tech stack and help make a clear Road Map. Any feedback is welcome.
Technologies apart from Scala and Spark are also welcome. Please note that the tools should be relevant to Machine Learning or Artificial Intelligence.
Lumosity is home to the world's largest cognitive training database, a responsibility we take seriously. For most of the company's history, our analysis of user behavior and training data has been powered by an event stream--first a simple Node.js pub/sub app, then a heavyweight Ruby app with stronger durability. Both supported decent throughput and latency, but they lacked some major features supported by existing open-source alternatives: replaying existing messages (also lacking in most message queue-based solutions), scaling out many different readers for the same stream, the ability to leverage existing solutions for reading and writing, and possibly most importantly: the ability to hire someone externally who already had expertise.
We ultimately migrated to Kafka in early- to mid-2016, citing both industry trends in companies we'd talked to with similar durability and throughput needs, the extremely strong documentation and community. We pored over Kyle Kingsbury's Jepsen post (https://aphyr.com/posts/293-jepsen-Kafka), as well as Jay Kreps' follow-up (http://blog.empathybox.com/post/62279088548/a-few-notes-on-kafka-and-jepsen), talked at length with Confluent folks and community members, and still wound up running parallel systems for quite a long time, but ultimately, we've been very, very happy. Understanding the internals and proper levers takes some commitment, but it's taken very little maintenance once configured. Since then, the Confluent Platform community has grown and grown; we've gone from doing most development using custom Scala consumers and producers to being 60/40 Kafka Streams/Connects.
We originally looked into Storm / Heron , and we'd moved on from Redis pub/sub. Heron looks great, but we already had a programming model across services that was more akin to consuming a message consumers than required a topology of bolts, etc. Heron also had just come out while we were starting to migrate things, and the community momentum and direction of Kafka felt more substantial than the older Storm. If we were to start the process over again today, we might check out Pulsar , although the ecosystem is much younger.
To find out more, read our 2017 engineering blog post about the migration!
- Fast28
- Deterministic incremental builds20
- Correct17
- Multi-language16
- Enforces declared inputs/outputs14
- High-level build language10
- Scalable9
- Multi-platform support5
- Sandboxing5
- Dependency management4
- Windows Support2
- Flexible2
- Android Studio integration1
- No Windows Support3
- Bad IntelliJ support2
- Poor windows support for some languages1
- Constant breaking changes1
- Learning Curve1
- Lack of Documentation1
related Bazel posts
All Java-Projects are compiled using Apache Maven. We prefer it over Apache Ant and Gradle as it combines lightweightness with feature-richness and offers basically all we can imagine from a software project-management tool and more. We're open however to re-evaluate this decision in favor of Gradle or Bazel in the future if we feel like we're missing out on anything.
related Mill posts
- Has package registry1
related CMake posts
related Sonatype Nexus posts
We use Sonatype Nexus to store our closed-source java libraries to simplify our deployment and dependency-management. While there are many alternatives, most of them are expensive ( GitLab Enterprise ), monilithic ( JFrog Artifactory ) or only offer SaaS-licences. We preferred the on-premise approach of Nexus and therefore decided to use it.
We exclusively use the Maven-capabilities and are glad that the modular design of Nexus allows us to run it very lightweight.
I'm beginning to research the right way to better integrate how we achieve SCA / shift-left / SecureDevOps / secure software supply chain. If you use or have evaluated WhiteSource, Snyk, Sonatype Nexus, SonarQube or similar, I would very much appreciate your perspective on strengths and weaknesses and how you selected your ultimate solution. I want to integrate with GitLab CI.