Alternatives to SciPy logo

Alternatives to SciPy

NumPy, R Language, scikit-learn, Anaconda, and MATLAB are the most popular alternatives and competitors to SciPy.
148
92
+ 1
0

What is SciPy and what are its top alternatives?

Python-based ecosystem of open-source software for mathematics, science, and engineering. It contains modules for optimization, linear algebra, integration, interpolation, special functions, FFT, signal and image processing, ODE solvers and other tasks common in science and engineering.
SciPy is a tool in the Data Science Tools category of a tech stack.
SciPy is an open source tool with 7.7K GitHub stars and 3.5K GitHub forks. Here鈥檚 a link to SciPy's open source repository on GitHub

Top Alternatives to SciPy

  • NumPy

    NumPy

    Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases. ...

  • R Language

    R Language

    R provides a wide variety of statistical (linear and nonlinear modelling, classical statistical tests, time-series analysis, classification, clustering, ...) and graphical techniques, and is highly extensible. ...

  • scikit-learn

    scikit-learn

    scikit-learn is a Python module for machine learning built on top of SciPy and distributed under the 3-Clause BSD license. ...

  • Anaconda

    Anaconda

    A free and open-source distribution of the Python and R programming languages for scientific computing, that aims to simplify package management and deployment. Package versions are managed by the package management system conda. ...

  • MATLAB

    MATLAB

    Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. ...

  • Pandas

    Pandas

    Flexible and powerful data analysis / manipulation library for Python, providing labeled data structures similar to R data.frame objects, statistical functions, and much more. ...

  • TensorFlow

    TensorFlow

    TensorFlow is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API. ...

  • PySpark

    PySpark

    It is the collaboration of Apache Spark and Python. it is a Python API for Spark that lets you harness the simplicity of Python and the power of Apache Spark in order to tame Big Data. ...

SciPy alternatives & related posts

NumPy logo

NumPy

693
517
5
Fundamental package for scientific computing with Python
693
517
+ 1
5
CONS OF NUMPY
    No cons available

    related NumPy posts

    Server side

    We decided to use Python for our backend because it is one of the industry standard languages for data analysis and machine learning. It also has a lot of support due to its large user base.

    • Web Server: We chose Flask because we want to keep our machine learning / data analysis and the web server in the same language. Flask is easy to use and we all have experience with it. Postman will be used for creating and testing APIs due to its convenience.

    • Machine Learning: We decided to go with PyTorch for machine learning since it is one of the most popular libraries. It is also known to have an easier learning curve than other popular libraries such as Tensorflow. This is important because our team lacks ML experience and learning the tool as fast as possible would increase productivity.

    • Data Analysis: Some common Python libraries will be used to analyze our data. These include NumPy, Pandas , and matplotlib. These tools combined will help us learn the properties and characteristics of our data. Jupyter notebook will be used to help organize the data analysis process, and improve the code readability.

    Client side

    • UI: We decided to use React for the UI because it helps organize the data and variables of the application into components, making it very convenient to maintain our dashboard. Since React is one of the most popular front end frameworks right now, there will be a lot of support for it as well as a lot of potential new hires that are familiar with the framework. CSS 3 and HTML5 will be used for the basic styling and structure of the web app, as they are the most widely used front end languages.

    • State Management: We decided to use Redux to manage the state of the application since it works naturally to React. Our team also already has experience working with Redux which gave it a slight edge over the other state management libraries.

    • Data Visualization: We decided to use the React-based library Victory to visualize the data. They have very user friendly documentation on their official website which we find easy to learn from.

    Cache

    • Caching: We decided between Redis and memcached because they are two of the most popular open-source cache engines. We ultimately decided to use Redis to improve our web app performance mainly due to the extra functionalities it provides such as fine-tuning cache contents and durability.

    Database

    • Database: We decided to use a NoSQL database over a relational database because of its flexibility from not having a predefined schema. The user behavior analytics has to be flexible since the data we plan to store may change frequently. We decided on MongoDB because it is lightweight and we can easily host the database with MongoDB Atlas . Everyone on our team also has experience working with MongoDB.

    Infrastructure

    • Deployment: We decided to use Heroku over AWS, Azure, Google Cloud because it is free. Although there are advantages to the other cloud services, Heroku makes the most sense to our team because our primary goal is to build an MVP.

    Other Tools

    • Communication Slack will be used as the primary source of communication. It provides all the features needed for basic discussions. In terms of more interactive meetings, Zoom will be used for its video calls and screen sharing capabilities.

    • Source Control The project will be stored on GitHub and all code changes will be done though pull requests. This will help us keep the codebase clean and make it easy to revert changes when we need to.

    See more

    related R Language posts

    Eric Colson
    Chief Algorithms Officer at Stitch Fix | 20 upvotes 路 1.6M views

    The algorithms and data infrastructure at Stitch Fix is housed in #AWS. Data acquisition is split between events flowing through Kafka, and periodic snapshots of PostgreSQL DBs. We store data in an Amazon S3 based data warehouse. Apache Spark on Yarn is our tool of choice for data movement and #ETL. Because our storage layer (s3) is decoupled from our processing layer, we are able to scale our compute environment very elastically. We have several semi-permanent, autoscaling Yarn clusters running to serve our data processing needs. While the bulk of our compute infrastructure is dedicated to algorithmic processing, we also implemented Presto for adhoc queries and dashboards.

    Beyond data movement and ETL, most #ML centric jobs (e.g. model training and execution) run in a similarly elastic environment as containers running Python and R code on Amazon EC2 Container Service clusters. The execution of batch jobs on top of ECS is managed by Flotilla, a service we built in house and open sourced (see https://github.com/stitchfix/flotilla-os).

    At Stitch Fix, algorithmic integrations are pervasive across the business. We have dozens of data products actively integrated systems. That requires serving layer that is robust, agile, flexible, and allows for self-service. Models produced on Flotilla are packaged for deployment in production using Khan, another framework we've developed internally. Khan provides our data scientists the ability to quickly productionize those models they've developed with open source frameworks in Python 3 (e.g. PyTorch, sklearn), by automatically packaging them as Docker containers and deploying to Amazon ECS. This provides our data scientist a one-click method of getting from their algorithms to production. We then integrate those deployments into a service mesh, which allows us to A/B test various implementations in our product.

    For more info:

    #DataScience #DataStack #Data

    See more
    scikit-learn logo

    scikit-learn

    735
    745
    29
    Easy-to-use and general-purpose machine learning in Python
    735
    745
    + 1
    29
    PROS OF SCIKIT-LEARN
    CONS OF SCIKIT-LEARN

    related scikit-learn posts

    Anaconda logo

    Anaconda

    252
    274
    0
    The Enterprise Data Science Platform for Data Scientists, IT Professionals and Business Leaders
    252
    274
    + 1
    0
    PROS OF ANACONDA
      No pros available
      CONS OF ANACONDA
        No cons available

        related Anaconda posts

        Shared insights
        on
        Java
        Anaconda
        Python

        I am going to learn machine learning and self host an online IDE, the tool that i may use is Python, Anaconda, various python library and etc. which tools should i go for? this may include Java development, web development. Now i have 1 more candidate which are visual studio code online (code server). i will host on google cloud

        See more
        Guillaume Simler

        Jupyter Anaconda Pandas IPython

        A great way to prototype your data analytic modules. The use of the package is simple and user-friendly and the migration from ipython to python is fairly simple: a lot of cleaning, but no more.

        The negative aspect comes when you want to streamline your productive system or does CI with your anaconda environment: - most tools don't accept conda environments (as smoothly as pip requirements) - the conda environments (even with miniconda) have quite an overhead

        See more
        MATLAB logo

        MATLAB

        475
        389
        26
        A high-level language and interactive environment for numerical computation, visualization, and programming
        475
        389
        + 1
        26

        related MATLAB posts

        Pandas logo

        Pandas

        986
        791
        19
        High-performance, easy-to-use data structures and data analysis tools for the Python programming language
        986
        791
        + 1
        19

        related Pandas posts

        Server side

        We decided to use Python for our backend because it is one of the industry standard languages for data analysis and machine learning. It also has a lot of support due to its large user base.

        • Web Server: We chose Flask because we want to keep our machine learning / data analysis and the web server in the same language. Flask is easy to use and we all have experience with it. Postman will be used for creating and testing APIs due to its convenience.

        • Machine Learning: We decided to go with PyTorch for machine learning since it is one of the most popular libraries. It is also known to have an easier learning curve than other popular libraries such as Tensorflow. This is important because our team lacks ML experience and learning the tool as fast as possible would increase productivity.

        • Data Analysis: Some common Python libraries will be used to analyze our data. These include NumPy, Pandas , and matplotlib. These tools combined will help us learn the properties and characteristics of our data. Jupyter notebook will be used to help organize the data analysis process, and improve the code readability.

        Client side

        • UI: We decided to use React for the UI because it helps organize the data and variables of the application into components, making it very convenient to maintain our dashboard. Since React is one of the most popular front end frameworks right now, there will be a lot of support for it as well as a lot of potential new hires that are familiar with the framework. CSS 3 and HTML5 will be used for the basic styling and structure of the web app, as they are the most widely used front end languages.

        • State Management: We decided to use Redux to manage the state of the application since it works naturally to React. Our team also already has experience working with Redux which gave it a slight edge over the other state management libraries.

        • Data Visualization: We decided to use the React-based library Victory to visualize the data. They have very user friendly documentation on their official website which we find easy to learn from.

        Cache

        • Caching: We decided between Redis and memcached because they are two of the most popular open-source cache engines. We ultimately decided to use Redis to improve our web app performance mainly due to the extra functionalities it provides such as fine-tuning cache contents and durability.

        Database

        • Database: We decided to use a NoSQL database over a relational database because of its flexibility from not having a predefined schema. The user behavior analytics has to be flexible since the data we plan to store may change frequently. We decided on MongoDB because it is lightweight and we can easily host the database with MongoDB Atlas . Everyone on our team also has experience working with MongoDB.

        Infrastructure

        • Deployment: We decided to use Heroku over AWS, Azure, Google Cloud because it is free. Although there are advantages to the other cloud services, Heroku makes the most sense to our team because our primary goal is to build an MVP.

        Other Tools

        • Communication Slack will be used as the primary source of communication. It provides all the features needed for basic discussions. In terms of more interactive meetings, Zoom will be used for its video calls and screen sharing capabilities.

        • Source Control The project will be stored on GitHub and all code changes will be done though pull requests. This will help us keep the codebase clean and make it easy to revert changes when we need to.

        See more
        Guillaume Simler

        Jupyter Anaconda Pandas IPython

        A great way to prototype your data analytic modules. The use of the package is simple and user-friendly and the migration from ipython to python is fairly simple: a lot of cleaning, but no more.

        The negative aspect comes when you want to streamline your productive system or does CI with your anaconda environment: - most tools don't accept conda environments (as smoothly as pip requirements) - the conda environments (even with miniconda) have quite an overhead

        See more
        TensorFlow logo

        TensorFlow

        2.2K
        2.3K
        72
        Open Source Software Library for Machine Intelligence
        2.2K
        2.3K
        + 1
        72

        related TensorFlow posts

        Conor Myhrvold
        Tech Brand Mgr, Office of CTO at Uber | 8 upvotes 路 1.1M views

        Why we built an open source, distributed training framework for TensorFlow , Keras , and PyTorch:

        At Uber, we apply deep learning across our business; from self-driving research to trip forecasting and fraud prevention, deep learning enables our engineers and data scientists to create better experiences for our users.

        TensorFlow has become a preferred deep learning library at Uber for a variety of reasons. To start, the framework is one of the most widely used open source frameworks for deep learning, which makes it easy to onboard new users. It also combines high performance with an ability to tinker with low-level model details鈥攆or instance, we can use both high-level APIs, such as Keras, and implement our own custom operators using NVIDIA鈥檚 CUDA toolkit.

        Uber has introduced Michelangelo (https://eng.uber.com/michelangelo/), an internal ML-as-a-service platform that democratizes machine learning and makes it easy to build and deploy these systems at scale. In this article, we pull back the curtain on Horovod, an open source component of Michelangelo鈥檚 deep learning toolkit which makes it easier to start鈥攁nd speed up鈥攄istributed deep learning projects with TensorFlow:

        https://eng.uber.com/horovod/

        (Direct GitHub repo: https://github.com/uber/horovod)

        See more

        In mid-2015, Uber began exploring ways to scale ML across the organization, avoiding ML anti-patterns while standardizing workflows and tools. This effort led to Michelangelo.

        Michelangelo consists of a mix of open source systems and components built in-house. The primary open sourced components used are HDFS, Spark, Samza, Cassandra, MLLib, XGBoost, and TensorFlow.

        !

        See more
        PySpark logo

        PySpark

        104
        107
        0
        The Python API for Spark
        104
        107
        + 1
        0
        PROS OF PYSPARK
          No pros available
          CONS OF PYSPARK
            No cons available

            related PySpark posts