To improve platform scalability and efficiency, Uber transitioned from JSON to Parquet, and built a central schema service to manage schemas and integrate different client libraries.

While the first generation big data platform was vulnerable to upstream data format changes, “ad hoc data ingestions jobs were replaced with a standard platform to transfer all source data in its original, nested format into the Hadoop data lake.”

These platform changes enabled the scaling challenges Uber was facing around that time: “On a daily basis, there were tens of terabytes of new data added to our data lake, and our Big Data platform grew to over 10,000 vcores with over 100,000 running batch jobs on any given day.”

Uber's Big Data Platform: 100+ Petabytes with Minute Latency | Uber Engineering Blog (
4 upvotes·34.4K views