Need advice about which tool to choose?Ask the StackShare community!
Amazon S3 vs MongoDB: What are the differences?
Amazon S3 is a scalable object storage service provided by Amazon Web Services (AWS). MongoDB, on the other hand, is a NoSQL database platform. Let's discuss the key differences between the two:
Scalability: Amazon S3 is a highly scalable storage service designed for handling large amounts of data, allowing users to store and retrieve any amount of data from anywhere. It offers near-infinite scalability, making it suitable for organizations with rapidly growing storage needs. On the other hand, MongoDB is a flexible and scalable NoSQL database that enables horizontal scaling by distributing data across multiple servers. It can handle massive amounts of data and support millions of transactions per second, making it ideal for high-performance applications.
Data Structure: Amazon S3 is an object storage service that stores data as objects within buckets. Each object is addressable using a unique key and can be up to 5 terabytes in size. Alternatively, MongoDB is a document-oriented database that stores data in flexible JSON-like documents called BSON. It allows for rich and dynamic schemas, making it easier to model complex data structures. Unlike Amazon S3, MongoDB supports the indexing and querying of data based on its structure, enabling more advanced data manipulation.
Querying and Indexing: While both Amazon S3 and MongoDB allow for data retrieval, MongoDB provides a more advanced querying and indexing functionality. MongoDB supports a powerful query language and allows for the creation of indexes on specific fields to improve the efficiency of data retrieval operations. In contrast, Amazon S3 is primarily designed for data storage and retrieval based on unique keys, without support for complex querying or indexing operations.
Data Consistency: Amazon S3 offers eventual consistency, meaning changes made to a stored object may take some time to propagate and become consistent across all regions and availability zones. This makes it suitable for applications where immediate consistency is not critical, such as storing static files. On the other hand, MongoDB provides strong consistency guarantees by default, ensuring that all replicas of a data set are consistent within a certain timeframe. This makes MongoDB a better choice for applications that require immediate, consistent access to data.
Data Processing and Analytics: While Amazon S3 primarily focuses on data storage, it integrates well with other AWS services, such as Amazon EMR (Elastic MapReduce) and Amazon Athena, to enable efficient data processing and analytics. These services allow users to run big data processing frameworks and perform complex analytics tasks directly on data stored in S3. In comparison, MongoDB provides built-in data processing capabilities through a powerful aggregation pipeline, allowing for real-time analytics and data transformations within the database itself.
Data Model Flexibility: MongoDB provides greater flexibility in terms of data modeling compared to Amazon S3. With MongoDB, users can store and access data in a more hierarchical and structured manner, allowing for more complex relationships between data elements. In contrast, Amazon S3 stores data as flat objects within buckets, without inherent support for hierarchical or relational connections between data.
In summary, Amazon S3 excels in scalable object storage and MongoDB provides a flexible and scalable NoSQL database solution with more advanced querying and indexing capabilities.
For learning purposes, I am trying to design a dashboard that displays the total revenue from all connected webshops/marketplaces, displaying incoming orders, total orders, etc.
So I will need to get the data (using Node backend) from the Shopify and marketplace APIs, storing this in the database, and get the data from the back end.
My question is:
What kind of database should I use? Is MongoDB fine for storing this kind of data? Or should I go with a SQL database?
Postgres is a solid database with a promising background. In the relational side of database design, I see Postgres as an absolute; Now the arguments and conflicts come in when talking about NoSQL data types. The truth is jsonb in Postgres is efficient and gives a good performance and storage. In a comparison with MongoDB with the same resources (such as RAM and CPU) with better tools and community, I think you should go for Postgres and use jsonb for some of the data. All in all, don't use a NoSQL database just cause you have the data type matching this tech, have both SQL and NoSQL at the same time.
I have found MongoDB easier to work with. Postgres and SQL in general, in my experience, is harder to work with. While Postgres does provide data consistency, MongoDB provides flexibility. I've found the MongoDB ecosystem to be really great with a good community. I've worked with MongoDB in production and it's been great. I really like the aggregation system and using query operators such as $in, $pull, $push.
While my opinion may be unpopular, I have found MongoDB really great for relational data, using aggregations from a code perspective. In general, data types are also more flexible with MongoDB.
I will use PostgreSQL because you have more powerfull feature for data agregation and views (the raw data from shopify and others could be stored as is) and then use views to produce diff. kind of reports unless you wanna create those aggregations/views in nodejs code. HTH
I want to store the data retrieved from multiple APIs and perform some analytics on it. The data stored in DB will never/hardly change. First, I thought it would be better to retrieve the data and create table columns for them, but some data might have different columns than others. So I thought about storing the JSON response from API directly to the table and use it. So which database will be the better choice, PostgreSQL or MongoDB.
Hey Krunal, your requirement sounds pretty clear and specific to what you want to do with that data. My recommendation to you, would be to use MongoDB. Since schema-less IO is faster in MongoDB, your general speed of reading / writing from and to the database would be quick. Additionally, the aggregate framework is very powerful with large data so that is also something that you can use in computing your analytics.
I suggest you to go with MongoDB
, because it is schema-less, i.e., it permits you to easily manipulate the schema of a table. If you want to add a column, it can be done without much effort. Moreover, MongoDB
can deal with more types of data, since the latest is stored as key-value pair. I do not what kind of analysis you are going to do, but NoSQL
is not the best choice if you are going to use complex queries. In addition, if you are working with huge amount of data and you are interested in optimising the performance, I suggest you PostgreSQL
.
Since you are speaking about API and JSON, I guess that you may using Node JS
for fetching API. I suggest you to try Mongoose
, which facilitate the use of MongoDB
with Node JS
.
Looks like the use case is to store JSON data. mongoDB and Postgres differ in so many aspects like scaling and consistency. Postgres has excellent JSON support now with the power of SQL. MongoDB is good in handling schema less data. However in this case it seems these differences don’t matter that much. I’d recommend you go with what you are most comfortable with.
I don't have an unquestionable opinion regarding your use case. I only trend to pick the MongoDB since it is schemaless avoiding null columns that you not always know when it is used (it depends on the source of the data). The only drawback that I could consider is the query's complexity in MongoDB, sometimes it is a bit tricky, when compared to the traditional SQL queries.
This is largely a matter of opinion. I see that someone else responded and recommended MongoDB but since you are doing data analytics, I highly recommend you go with SQL. You're going to have a really hard time normalizing the data when you can't manipulate relationships and bulk edit with a nice update query.
I'm much more experienced with MySQL than any other database and I am having a hard time getting on board with noSQL entirely because it's really hard to query complex data with relationships using noSQL. I'm using Firestore with one of my apps and MongoDB with another app but they both use MySQL for the heavy lifting and then a document database for things like permissions, caching, etc.
It sounds like the type of problem you need to reverse engineer. I'm sure you can imagine what the data sets would look like if you use MongoDB or Postgres. I suspect that putting in a little bit more work up front will pay high dividends and productivity once the data is normalized.
Again - it's largely a matter of preference but I prefer SQL almost every time.
I need urgent advice from you all! I am making a web-based food ordering platform which includes 3 different ordering methods (Dine-in using QR code scanning + Take away + Home Delivery) and a table reservation system. We are using React for the front-end, and I need your advice if I should use NestJS or ExpressJS for the backend. And regarding the database, which database should I use, MongoDB or PostgreSQL? Which combination will be better? PS. We want to follow the microservice architecture as scalability, reliability, and usability are the most important Non Functional requirements. Expert advice is needed, please. A load of thanks in advance. Kind Regards, Miqdad
I can't speak for the NestJS vs ExpressJS discussion, but I can given a viewpoint on databases.
The main thing to consider around database choice, is what "shape" the data will be in, and the kind of read/write patterns you expect of that data. The blog example shows up so much for DBMS like MongoDB, because it showcases what NoSQL / document storage is very scalable and performant in: mostly isolated documents with a few views / ways to order them and filter them. In your case, I can imagine a number of "relations" already, which suggest a more traditional SQL solution would work well: You have restaurants, they have maybe a few menus (regular, gluten-free etc), with menu items in, which have different prices over time (25% discount on christmas food just after christmas, 50% off pizzas on wednesdays). Then there's a whole different set of "relations" for people ordering, like showing them past orders, which need to refer to the restaurant etc, and credit card transaction information for refunds etc. That to me suggests PostgreSQL, which will scale quite well if you database design is okay.
PostgreSQL also offers you some extensions, which are just amazing for your use-case. https://postgis.net/ for example will let you query for restaurants based on location, without the big cost that comes from constantly using something like Google Maps API to work out which restaurants are near to someone ordering. Partitioning and window functions will be great for your own use internally too, like answering questions of "What types of takeways perform the best for us, Italian, Mexican?" or in combination with PostGIS, answering questions like "What kind of takeways do we need to market to, to improve our selection?".
While these things can all be implemented in MongoDB, you tend to lose some of the convenience of ACID or have to deal with things like eventual consistency, which requires more thinking on the part of your engineers. PostgreSQL offers decent (if more complex) scalablity and redundancy solutions, and is honestly very well proven and plenty of documentation exists on optimising queries.
Hello, i build microservice systems using Angular And Spring (Java) so i can't help with with ur back end choice, BUT, i definitely advice you to use a Nosql database, thus MongoDB of course or even Cassandra if your looking for extreme scalability with zero point of failure. Anyway, Nosql if much more faster then Sql (in your case Postresql DB). All you wanna do with sql can also be done by nosql (not the opposite of course).I also advice you to use docker containers + kubernetes to orchestrate them, if you need scalability and replication, that way your app can support auto scalability (in case ur users number goes high). Best of luck
About PostgreSQL vs MongoDB: short answer. Both are great. Choose what you like the most. Only if you expect millions of users, I‘ll incline with MongoDB.
Hello! I have a mobile app with nearly 100k MAU, and I want to add a cloud file storage service to my app.
My app will allow users to store their image, video, and audio files and retrieve them to their device when necessary.
I have already decided to use PHP & Laravel as my backend, and I use Contabo VPS. Now, I need an object storage service for my app, and my options are:
Amazon S3 : It sounds to me like the best option but the most expensive. Closest to my users (MENA Region) for other services, I will have to go to Europe. Not sure how important this is?
DigitalOcean Spaces : Seems like my best option for price/service, but I am still not sure
Wasabi: the best price (6 USD/MONTH/TB) and free bandwidth, but I am not sure if it fits my needs as I want to allow my users to preview audio and video files. They don't recommend their service for streaming videos.
Backblaze B2 Cloud Storage: Good price but not sure about them.
There is also the self-hosted s3 compatible option, but I am not sure about that.
Any thoughts will be helpful. Also, if you think I should post in a different sub, please tell me.
If pricing is the issue i'd suggest you use digital ocean, but if its not use amazon was digital oceans API is s3 compatible
Hello Mohammad, I am using : Cloudways >> AWS >> Bahrain for last 2 years. This is best I consider out of my 10 year research on Laravel hosting.
Hello, I am developing a new project with an internal chat between users. Also, there are complex relationships between the other project entities but I wolud like to build something scalable and fast and right now I am designing the data model. What kind of database would you recommend me to manage all application data? relational like MySQL, no relational like MongoDB or a mixed one? Thank you
In MongoDB, a write operation is atomic on the level of a single document, so it's harder to deal with consistency without transactions.
MongoDB supports horizontal scaling through Sharding , distributing data across several machines and facilitating high throughput operations with large sets of data. ... Sharding allows you to add additional instances to increase capacity when required
If you are trying with "complex relationships", give a chance to learn ArangoDB and Graph databases. Its database structures allow doing this with faster and simpler queries. The database is not as strict as others and allows arbitrary data. The data model is really like a neural network and you will never need foreign keys tables anymore. In Udemy there is a free course about it to get started.
The most important question is where are you planning to host? On-premise, or in the cloud.
Particularly if you are planning to host in either AWS or Azure, then your first point of call should be the PaaS (Platform as a Service) databases supplied by these vendors, as you will find yourself requiring a lot less effort to support them, much easier Disaster Recovery options, and also, depending on how PAYG the database is that you use, potentially also much cheaper costs than having a dedicated database server.
Your question regards 'Relational or not' is obviously key, and you need to consider both your required data structure, as well as the ACID requirements of your application model, as well as the non-functional requirements in terms of scalability, resilience, whether you want security authorisation at the highest application tier, or right down to 'row' level in the database, etc. - however please don't fall into the trap of considering 'NoSQL' as being single category. MongoDB, with its document-store type solution is a very different model to key-value-pair stores (like AWS DynamoDB), or column stores (like AWS RedShift) or for more complex data relationships, Entity Graph Stores (like AWS Neptune), to stores designed for tokenisation and text search (ElasticSearch) etc.
Also critical in all this is how many items you believe you need to index by. RDBMS/SQL stores are great for having as many indexes as you want, other than the slow-down in write speed, whereas databases like Amazon DynamoDB provide blisteringly fast read/write performance, but are very limited on key indexing capabilities.
It feels like you have most experience with SQL/RDBMS technologies, so for the simplest learning curve, and if your application fits it, then I'd personally start by looking at AWS Aurora https://aws.amazon.com/rds/aurora/ .
I think, Its depend of your project type and your skills. MySQL is good and simple for maintenance but MongoDB need more skills and knowledge. If you work on little project, use MySQL. For your project type, MySQL is enough after you can migrate with PostgreSQL
FIrstly, it may help if you explain what you mean by "complex relationships between project entities". Secondly, you can build a fast and scalable solution using either. With that said however, the data sounds relational so I would recommend MySQL.
I am going to work on a real estate project and have to decide on a database. Now, SQL databases can be very efficient if appropriately designed. More relations between the data and less redundancy. But with a #NoSQL database, the development time is reduced, and it is easy to query. Since this is my first time working on the real estate domain, I would like to pick a database that would be efficient in the long run.
I recommend PostgreSQL as it’s the most powerful out of the 3 databases you mentioned. It supports JSON objects so you can mimic the MongoDB functionality, but I would also argue that SQL is actually quite powerful and in many cases significantly easier to work with than with NoSQL databases.
Stay away from foreign keys, keep it fast and simple. Define your data structures well in advance. Try to model your data structures based on your system’s vision; based on where it’s going and not based solely on what you currently need it to do. This will help you avoid drastic changes to your database after your system is launched. Populate the database with fake data and run tests. PostgreSQL allows you to create Views from multiple tables. Try to create those views and make sure you can easily create useful views from multiple tables. Run an Explain on those view queries to make sure you created your indexes correctly. Make sure it’s fast!
Any of those three databases are going to be efficient, scalable, and reliable in the long term if you configure and use them correctly. They all also have solid hosting solutions.
All things being equal, I would agree with other posters that Postgres is my preference among the three, but there are caveats.
MongoDB and MySQL have better support for mutli-region replication in your big three cloud environments. Azure recently bought Citus Data, which was a best-in-class Postgres replication solution, so they might be the only one I trust to provide cross-region replication at the moment.
If you have a single region deployment and are on AWS, I can't recommend Aurora Postgres highly enough. It's a very good implementation and extremely performant.
I'll second another piece of advice. Postgresql's JSON columns are a dream when it comes to productivity and I use them frequently with our Rails application. In these cases, no migration is required to change schema. We store payloads with dozens or hundreds of keys and performance has not been an issue. We also have a lot of relational tables, so the joins we get with SQL are very important to us and hard to replicate with a NoQL solution.
That really depends of where do you see you application in the long run. On any application, any of those choices are excellent. You could argue about good support on JSON binaries, but even MySQL has an excellent support for that on the latest versions.
On the long run, when your application gets hundreds of thousands of requests per second, you might start thinking about how many inputs you will have in the database compared to the outputs. PostgresSQL it’s excellent at giving you outputs, but table corruption can happen when you start receiving this massive number of inputs (Which was the reason Uber switched from Postgres to MySQL)
On our OPS Platform at CTO.ai , we decided to use Postgres, because we need a reliable and agile way to send the output to our users, so that was out best choice in the long run for our product.
I am one of those who believes that MongoDB can be used for everything, this thanks to the advertising of MongoDB.
We are creating an e-commerce platform, we know that it has many relationships, but with MongoDB we can avoid some, but in the end, some relationships have to exist.
A single developer to create two native applications in Flutter, a web application with React, create the backend with multiple microservices hosted with Google Cloud Run. PostgreSQL can be heavy because it should be used with an ORM, on the contrary, with MongoDB you can avoid some relationships and avoid ORM / ODM.
We need advice from someone who has the experience and has had to choose between these two databases for an e-commerce site.
The real question here is not about the technology but rather your real needs and your data. Do you need to manage data that has core concepts and relations ? (such as a family, with parents and children) or do you need to manage a basic collection of similar data (such as blog entries)? PostgreSQL is definitely a relational database for managing entities and their relationships whereas MongoDB (I may be strongly opinionated here ;-) ) is more targeted at managing collection of entities (such as the blog entries). For an e-commerce site (with some products, products categories, user ratings and comments, prices, bundles...) I would go for PostgreSQL as it will support/guide you in creating a structured data set with all your products, organized in categories and with user ratings/comments attached to them. HTH
Had exactly the same question when selecting data storage for our new product. Not e-commerce though, rather interactive and content-focused HR SaaS for SME.
The key arguments for PostgreSQL
It gives you the opportunity to use relationships where you really need it and just go with key-value tables where you don't.
With Jsonb datatype you can store documents/objects/arrays as JSON then use JSON elements in queries and even indexes.
There are more tools/integrations working with PostgreSQL which you can use out of the box, e.g. Hasura
I am in your spot, exactly. A few months ago, I had decided to use Postgres because since its version 9 it showed a lot of progress for being a high-availability database. However, frankly, I didn't want to model statically all data, since I have several distinct schemas (like for different product types) and I wanted some flexibility to add or remove as I saw fit. One of the main challenges with analyzing a NoSQL database being familiar in the SQL ways, is that it's easy to look for "analogies" for what makes SQL useful, like relationship enforcing, transactions and the cascading effect on deletes, updates and inserts, and that limit your vision a lot when analyzing a tool like Mongo, especially in a micro-services pattern. Now-a-days, I really found my solution in Mongo. Not just because of it being NoSQL, but because all of the support I find in the NodeJS community through packages and utilities that make it dead easy to use it for several use-cases. Whatever Postgres offers, Mongo does it a little easier and better, like text search and geo-queries. What you need to see is to model your data in a way that makes sense with Mongo. For instance, I've got a User service that has all auth related information of a user. But then, I have the same user in the Profile service, with the same id, but totally different fields. You have two de facto ways to connect data, by reference and embedding, which in Ecommerce, both have big uses. Like using references to relate a User to a Profile, and an embed to relate a Product to an Order. There's even a third, albeit a little more "manual" implementation here, the graph relationship in which you can model data, in which you can easily model event-driven documents, like a Purchase that goes from "a customer" to "a store", which you can later use for much easier and deep analytics than with the classical SQL stance. MariaDB has it readily available, and also has many improvements over MySQL and Postgres, especially for NoSQL features and scalability. Sadly it is just seen as a MySQL clone, but it offers more than that (although its documentation could be improved). Using Mongo in a micro-service environment is even better because your models can be smaller, meaning less burden on relationships, although you do compensate with a bit of duplication, but a well-designed schema will have minimal impact on that. Whatever tool might do the job, but I want to cheer on the newer generation. Hope it helps.
Hello,
I am trying to design an online ordering app similar to Doordash or Uber Eats. I'm having a hard time trying to finalise on what database (or mixture of databases) to use. I'm leaning towards using a relational database like MySQL or PostgreSQL. But, when the application grows, I don't want to join on 20 tables to get a data. Any help would be greatly appreciated. Thank you for your time.
Hello Suhas , We build our product www.voilacabs.com which is in the same lines as yours but we have used a combination of Mysql and MongoDB. When using MySQL, i would recommend doing the following: 1. Use Mysql only for storage only and for realtime updates we recommend MongoDB. 2. Don't try to Join more than 3 tables. ( the moment you reach 3 join stop there and try to un-normalized database. 3. Never or very rarely use Auto-increments. ( we recommend using UUIDS ) . Use UUIDS always for Auto increments for MYSQL. If you using Postgre SQL then i would suggest you to please check this https://instagram-engineering.com/sharding-ids-at-instagram-1cf5a71e5a5c There is a stored procedure that generated unique keys instead of auto-increment keys and that will help you sharding or clustering database without sync errors. 4. Also For MongoDB if you can put a layer of REDIS Cache then that will boost your api performance under large loads. 5. Use Node.js programing language as that function asynchronously .
Let me know if you still need any suggestion's . Thanks & Regards Rupen Makhecha CTO @ Voila Cab's www.voilacabs.com
I would recommend a mixture of MySQL and MongoDB. Using MongoDB for the Content Distribution Network (CDN) will make it easy to store high volume incoming data. MySQL is recommended to be used for business logic. PostgreSQL is not recommended since you will be faced with inefficient database replication features and constant migration from one PostgreSQL version to another.
I'm currently developing an app that ranks trending stuff ( such as games, memes or movies, etc. ) or events in a particular country or region. Here are the specs: My app does not require registration and requires cookies and localStorage to track users. Users can add new entries to each trending category provided that their country of origin is recorded in cookies. If each category contains more than 100 items then the oldest items get deleted. The question is: what kind of database should I use for managing this app? Thanks in advance
I think your best and cheapest choice is going to be MongoDB, Although Postgres is probably going to be the more scaleable approach, you likely have a good idea of how you want to present your data, and the app seems small enough that you shouldn't need to worry about scaling issues. It also sounds like your app can grow in a linear capacity based on the number of users, and the amount of data, which is the perfect use-case for noSQL databases (linear, predictable scaling).
Correct me if I have any of these assumptions wrong. 1. You're looking to have a relatively high-read with a lower write volume 2. Your app is essentially a list of objects that can belong to a category 3. users can create objects in this list.
I think Mongo is going to be what you're looking for on the following basis: 1. you absolutely need a database that is shared by all users of your app, therefor IndexedDB is out of the question. 2. You have semi-structured data 3. you probably want the cheapest solution.
I think Postgres is wrong for the following reasons: 1. your app is pretty simple in concept, SQL databases will add unnecessary complexity to your system, either through ORMs or SQL queries. (use an ORM if you go with SQL) 2. Hosting SQL databases for production is not cheap! the cheapest solution I know of for Postgres is ElephantSQL. It provides 20MB for free with 5 concurrent connections, you should be okay to manage these limitations if you decide to go Postgres in the end. Whereas mongoDB Atlas has some great free-tier options.
Although your data might be easier to model in Postgres, you can certainly model your data as a single list of items that have a category attached.
I don't want to officially recommend another tool, but you should really checkout prisma, firebase, amplify, or Azure App Services for this app! Just go completely backend-less [Firebase] https://firebase.google.com/ [Amplify] https://aws.amazon.com/amplify/ [Prisma] https://www.prisma.io/ [Azure App Services] https://azure.microsoft.com/en-us/services/app-service/?v=18.51
Hi everybody, I'm developing an application to be used in a gym setting where athletes fill out a health survey, and coaches can analyze the results. However, due to the dynamic nature of some aspects of the app and more static aspects of the other, I am wondering if/how I would integrate MongoDB with my existing PostgreSQL database. I would like to store things like registrations, license information, and club information in Postgres
, while I am thinking about moving things like user surveys, logging, and user settings information over to MongoDB
. Some fields on the survey are integers, some large blocks of text, and some are arrays. My thought is, if I moved that data to MongoDB
, it would give us greater flexibility in terms of adding and removing fields and data to them, and it would scale a lot easier than Postgres
. Not to mention it will be easier to organize that kind of data. Is that overkill or am I approaching this issue the right way? Thank you!
You can have your cake and eat it too. If you really need the flexibility of a document store, Postgresql's JSONB support allows you to mix and match relational data and document data within the same database/table. You can just as easily run analytical queries against JSONB data in Postgresql as you can against "normal" relational data. MongoDB comes with a significant operational overhead and cost (hello replica sets), so unless you really need MongoDB's sharding capabilities (which you shouldn't until you get to extreme scaling numbers), then just stick with Postgresql and use JSONB where you need it.
With PostgreSQL you could easily integrate JSON or array type columns and develope a simple interface to add columns on your application. Anyway handling all the data this way will require some intermediate skill with PostgreSQL dialect and a mix and match of syntaxes for your analitical queryes. Also you will need to have a good design for you backend to handle all this. MongoDB will handle all this in a more natural way and I believe will be more easily integrated with a Node.js backend.
How are you managing your PostgreSQL schema? It doesn't have to be hard to add or remove fields. We're working on a SQL database client at BaseDash that lets you add/remove columns in a couple clicks.
If you decide to migrate some of your data to MongoDB, you can definitely manage the two databases in parallel. For any records that need to be linked, you can treat it just like a foreign key by creating a column that points to an ID in the other database. For example, you might store user settings in MongoDB, and include a UserId
field that points to your User record in your Postgres database.
Those types of things should fit fine in a postgres json column. You'll actually have more flexibility with postgres because you can have a field as a normal column or in a json column, and you can have constraints and indexes on fields within a json column (or not).
At Pushnami we were looking at several alternative databases that would support following architectural requirements: - very quick prototyping for an unknown domain - ability to support large amounts of data - native ability to replicate and fail over - full stack approach for Node.js development After careful consideration MongoDB came on top, and 3 years later we are still very happy with that decision. Currently we keep almost 2TB of data in our cluster, and start thinking about sharding.
After using couchbase for over 4 years, we migrated to MongoDB and that was the best decision ever! I'm very disappointed with Couchbase's technical performance. Even though we received enterprise support and were a listed Couchbase Partner, the experience was horrible. With every contact, the sales team was trying to get me on a $7k+ license for access to features all other open source NoSQL databases get for free.
Here's why you should not use Couchbase
Full-text search Queries The full-text search often returns a different number of results if you run the same query multiple types
N1QL queries Configuring the indexes correctly is next to impossible. It's poorly documented and nobody seems to know what to do, even the Couchbase support engineers have no clue what they are doing.
Community support I posted several problems on the forum and I never once received a useful answer
Enterprise support It's very expensive. $7k+. The team constantly tried to get me to buy even though the community edition wasn't working great
Autonomous Operator It's actually just a poorly configured Kubernetes role that no matter what I did, I couldn't get it to work. The support team was useless. Same lack of documentation. If you do get it to work, you need 6 servers at least to meet their minimum requirements.
Couchbase cloud Typical for Couchbase, the user experience is awful and I could never get it to work.
Minimum requirements
The minimum requirements in production are 6 servers. On AWS the calculated monthly cost would be ~$600
. We achieved better performance using a $16
MongoDB instance on the Mongo Atlas Cloud
writing queries is a nightmare While N1QL is similar to SQL and it's easier to write because of the familiarity, that isn't entirely true. The "smart index" that Couchbase advertises is not smart at all. Creating an index with 5 fields, and only using 4 of them won't result in Couchbase using the same index, so you have to create a new one.
Couchbase UI
The UI that comes with every database deployment is full of bugs, barely functional and the developer experience is poor. When I asked Couchbase about it, they basically said they don't care because real developers use SQL directly from code
Consumes too much RAM
Couchbase is shipped with a smaller Memcached instance to handle the in-memory cache. Memcached ends up using 8 GB of RAM for 5000 documents
! I'm not kidding! We had less than 5000 docs on a Couchbase instance and less than 20 indexes and RAM consumption was always over 8 GB
Memory allocations are useless I asked the Couchbase team a question: If a bucket has 1 GB allocated, what happens when I have more than 1GB stored? Does it overflow? Does it cache somewhere? Do I get an error? I always received the same answer: If you buy the Couchbase enterprise then we can guide you.
Minio is a free and open source object storage system. It can be self-hosted and is S3 compatible. During the early stage it would save cost and allow us to move to a different object storage when we scale up. It is also fast and easy to set up. This is very useful during development since it can be run on localhost.
We actually use both Mongo and SQL databases in production. Mongo excels in both speed and developer friendliness when it comes to geospatial data and queries on the geospatial data, but we also like ACID compliance hence most of our other data (except on-site logs) are stored in a SQL Database (MariaDB for now)
MySQL has a lot of strengths working for it. It's simple and easy to set up and use. It's JSON engine is also really good these days. Mongo is also simple to setup and use, and it's speed as a document-object storage engine is first class.
Where Postgres has both beat is in it's combining of all of the features that make both MySQL and Mongo great, while adding on enterprise grade level scalability and replication. It's Postgres' stability and robustness, while still fulfilling the roles of it's contemporaries extremely well that edge Postgre for me.
When I was new with web development, I was using PHP for backend and MySQL for database. But after improving my JS skills, I chosen Node.js. Because of too many reasons including npm, express, community, fast coding and etc. MongoDB is so good for using with Node.js. If your JS skills are enough good, I recommend to migrate to Node.js and MongoDB.
My data was inherently hierarchical, but there was not enough content in each level of the hierarchy to justify a relational DB (SQL) with a one-to-many approach. It was also far easier to share data between the frontend (Angular), backend (Node.js) and DB (MongoDB) as they all pass around JSON natively. This allowed me to skip the translation layer from relational to hierarchical. You do need to think about correct indexes in MongoDB, and make sure the objects have finite size. For instance, an object in your DB shouldn't have a property which is an array that grows over time, without limit. In addition, I did use MySQL for other types of data, such as a catalog of products which (a) has a lot of data, (b) flat and not hierarchical, (c) needed very fast queries.
We used Mongo for the first iterations of our app, but the relational nature of our data was an awkward fit for a database that is not relational. We sorely lacked relational database integrity features that needed to be done on the application side (poorly) and it was a huge relief when we managed to port our application over to Postgres, which performs great and never gives us trouble, while having very user friendly extensions like JSON and PubSub that made the transition easy.
We offer our customer HIPAA compliant storage. After analyzing the market, we decided to go with Google Storage. The Nodejs API is ok, still not ES6 and can be very confusing to use. For each new customer, we created a different bucket so they can have individual data and not have to worry about data loss. After 1000+ customers we started seeing many problems with the creation of new buckets, with saving or retrieving a new file. Many false positive: the Promise returned ok, but in reality, it failed.
That's why we switched to S3 that just works.
We wanted a JSON datastore that could save the state of our bioinformatics visualizations without destructive normalization. As a leading NoSQL data storage technology, MongoDB has been a perfect fit for our needs. Plus it's open source, and has an enterprise SLA scale-out path, with support of hosted solutions like Atlas. Mongo has been an absolute champ. So much so that SQL and Oracle have begun shipping JSON column types as a new feature for their databases. And when Fast Healthcare Interoperability Resources (FHIR) announced support for JSON, we basically had our FHIR datalake technology.
Pros of Amazon S3
- Reliable590
- Scalable492
- Cheap456
- Simple & easy329
- Many sdks83
- Logical30
- Easy Setup13
- REST API11
- 1000+ POPs11
- Secure6
- Easy4
- Plug and play4
- Web UI for uploading files3
- Faster on response2
- Flexible2
- GDPR ready2
- Easy to use1
- Plug-gable1
- Easy integration with CloudFront1
Pros of MongoDB
- Document-oriented storage828
- No sql593
- Ease of use553
- Fast464
- High performance410
- Free255
- Open source218
- Flexible180
- Replication & high availability145
- Easy to maintain112
- Querying42
- Easy scalability39
- Auto-sharding38
- High availability37
- Map/reduce31
- Document database27
- Easy setup25
- Full index support25
- Reliable16
- Fast in-place updates15
- Agile programming, flexible, fast14
- No database migrations12
- Easy integration with Node.Js8
- Enterprise8
- Enterprise Support6
- Great NoSQL DB5
- Support for many languages through different drivers4
- Schemaless3
- Aggregation Framework3
- Drivers support is good3
- Fast2
- Managed service2
- Easy to Scale2
- Awesome2
- Consistent2
- Good GUI1
- Acid Compliant1
Sign up to add or upvote prosMake informed product decisions
Cons of Amazon S3
- Permissions take some time to get right7
- Requires a credit card6
- Takes time/work to organize buckets & folders properly6
- Complex to set up3
Cons of MongoDB
- Very slowly for connected models that require joins6
- Not acid compliant3
- Proprietary query language2