StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Utilities
  3. Background Jobs
  4. Message Queue
  5. Amazon SQS vs Kafka vs RabbitMQ

Amazon SQS vs Kafka vs RabbitMQ

OverviewDecisionsComparisonAlternatives

Overview

Amazon SQS
Amazon SQS
Stacks2.8K
Followers2.0K
Votes171
RabbitMQ
RabbitMQ
Stacks21.8K
Followers18.9K
Votes558
GitHub Stars13.2K
Forks4.0K
Kafka
Kafka
Stacks24.2K
Followers22.3K
Votes607
GitHub Stars31.2K
Forks14.8K

Amazon SQS vs Kafka vs RabbitMQ: What are the differences?

Introduction

This article compares the key differences between Amazon SQS, Kafka, and RabbitMQ.

  1. Scalability: Amazon SQS is a fully managed message queuing service that can scale automatically to accommodate the load. It is designed to handle any volume of messages without requiring manual intervention. Kafka, on the other hand, is a distributed streaming platform that is highly scalable and can handle high throughput. RabbitMQ supports scalability through clustering but may require manual intervention for scaling.

  2. Message Delivery Guarantees: Amazon SQS provides at-least-once delivery guarantee. It ensures that a message is delivered to a consumer at least once but may result in duplicate deliveries in some cases. Kafka supports at-least-once semantics, ensuring that messages are not lost, and developers can customize the trade-off between latency and durability. RabbitMQ supports multiple delivery modes, including at-least-once, at-most-once, and exactly-once, depending on the message acknowledgment patterns.

  3. Message Ordering: Amazon SQS and Kafka both guarantee order-preserving delivery within individual partitions or queues. However, Kafka provides global order guarantee when messages are produced to multiple partitions of a topic using the same key. RabbitMQ supports message ordering within a single queue or channel but may not guarantee global order across multiple queues.

  4. Message Retention: Amazon SQS has a default retention period of 4 days, which can be extended up to 14 days. Kafka retains messages for a configurable period of time, and it is often used for long-term data storage. RabbitMQ retains messages as long as they are needed by at least one consumer or until a specified time-to-live (TTL) is reached.

  5. Message Durability: Amazon SQS stores messages redundantly across multiple availability zones, ensuring high durability. Kafka provides configurable durability guarantees by specifying the replication factor for topic partitions. RabbitMQ can be made durable by configuring queues as durable, ensuring that messages survive broker restarts.

  6. Message Protocol and API: Amazon SQS provides a web-based interface and a set of APIs that can be accessed using HTTP or HTTPS protocols. Kafka has its own proprietary protocol and provides a simple API based on publish-subscribe and message storage principles. RabbitMQ supports multiple protocols like AMQP, MQTT, and STOMP, offering flexibility in integrating with different systems.

In summary, Amazon SQS is a fully managed message queuing service with automatic scalability and at-least-once delivery guarantee. Kafka is a distributed streaming platform with high scalability, flexible durability guarantees, and support for global message ordering. RabbitMQ offers message ordering within a single queue or channel, multiple delivery modes, and protocol flexibility.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Amazon SQS, RabbitMQ, Kafka

André
André

Technology Manager at GS1 Portugal - Codipor

Jul 30, 2020

Needs adviceon.NET Core.NET Core

Hello dear developers, our company is starting a new project for a new Web App, and we are currently designing the Architecture (we will be using .NET Core). We want to embark on something new, so we are thinking about migrating from a monolithic perspective to a microservices perspective. We wish to containerize those microservices and make them independent from each other. Is it the best way for microservices to communicate with each other via ESB, or is there a new way of doing this? Maybe complementing with an API Gateway? Can you recommend something else different than the two tools I provided?

We want something good for Cost/Benefit; performance should be high too (but not the primary constraint).

Thank you very much in advance :)

461k views461k
Comments
mediafinger
mediafinger

Feb 13, 2019

ReviewonKafkaKafkaRabbitMQRabbitMQ

The question for which Message Queue to use mentioned "availability, distributed, scalability, and monitoring". I don't think that this excludes many options already. I does not sound like you would take advantage of Kafka's strengths (replayability, based on an even sourcing architecture). You could pick one of the AMQP options.

I would recommend the RabbitMQ message broker, which not only implements the AMQP standard 0.9.1 (it can support 1.x or other protocols as well) but has also several very useful extensions built in. It ticks the boxes you mentioned and on top you will get a very flexible system, that allows you to build the architecture, pick the options and trade-offs that suite your case best.

For more information about RabbitMQ, please have a look at the linked markdown I assembled. The second half explains many configuration options. It also contains links to managed hosting and to libraries (though it is missing Python's - which should be Puka, I assume).

159k views159k
Comments
Mickael
Mickael

DevOps Engineer at Rookout

Mar 1, 2020

Decided

In addition to being a lot cheaper, Google Cloud Pub/Sub allowed us to not worry about maintaining any more infrastructure that needed.

We moved from a self-hosted RabbitMQ over to CloudAMQP and decided that since we use GCP anyway, why not try their managed PubSub?

It is one of the better decisions that we made, and we can just focus about building more important stuff!

472k views472k
Comments

Detailed Comparison

Amazon SQS
Amazon SQS
RabbitMQ
RabbitMQ
Kafka
Kafka

Transmit any volume of data, at any level of throughput, without losing messages or requiring other services to be always available. With SQS, you can offload the administrative burden of operating and scaling a highly available messaging cluster, while paying a low price for only what you use.

RabbitMQ gives your applications a common platform to send and receive messages, and your messages a safe place to live until received.

Kafka is a distributed, partitioned, replicated commit log service. It provides the functionality of a messaging system, but with a unique design.

A queue can be created in any region.;The message payload can contain up to 256KB of text in any format. Each 64KB ‘chunk’ of payload is billed as 1 request. For example, a single API call with a 256KB payload will be billed as four requests.;Messages can be sent, received or deleted in batches of up to 10 messages or 256KB. Batches cost the same amount as single messages, meaning SQS can be even more cost effective for customers that use batching.;Long polling reduces extraneous polling to help you minimize cost while receiving new messages as quickly as possible. When your queue is empty, long-poll requests wait up to 20 seconds for the next message to arrive. Long poll requests cost the same amount as regular requests.;Messages can be retained in queues for up to 14 days.;Messages can be sent and read simultaneously.;Developers can get started with Amazon SQS by using only five APIs: CreateQueue, SendMessage, ReceiveMessage, ChangeMessageVisibility, and DeleteMessage. Additional APIs are available to provide advanced functionality.
Robust messaging for applications;Easy to use;Runs on all major operating systems;Supports a huge number of developer platforms;Open source and commercially supported
Written at LinkedIn in Scala;Used by LinkedIn to offload processing of all page and other views;Defaults to using persistence, uses OS disk cache for hot data (has higher throughput then any of the above having persistence enabled);Supports both on-line as off-line processing
Statistics
GitHub Stars
-
GitHub Stars
13.2K
GitHub Stars
31.2K
GitHub Forks
-
GitHub Forks
4.0K
GitHub Forks
14.8K
Stacks
2.8K
Stacks
21.8K
Stacks
24.2K
Followers
2.0K
Followers
18.9K
Followers
22.3K
Votes
171
Votes
558
Votes
607
Pros & Cons
Pros
  • 62
    Easy to use, reliable
  • 40
    Low cost
  • 28
    Simple
  • 14
    Doesn't need to maintain it
  • 8
    It is Serverless
Cons
  • 2
    Difficult to configure
  • 2
    Proprietary
  • 2
    Has a max message size (currently 256K)
  • 1
    Has a maximum 15 minutes of delayed messages only
Pros
  • 235
    It's fast and it works with good metrics/monitoring
  • 80
    Ease of configuration
  • 60
    I like the admin interface
  • 52
    Easy to set-up and start with
  • 22
    Durable
Cons
  • 9
    Too complicated cluster/HA config and management
  • 6
    Needs Erlang runtime. Need ops good with Erlang runtime
  • 5
    Configuration must be done first, not by your code
  • 4
    Slow
Pros
  • 126
    High-throughput
  • 119
    Distributed
  • 92
    Scalable
  • 86
    High-Performance
  • 66
    Durable
Cons
  • 32
    Non-Java clients are second-class citizens
  • 29
    Needs Zookeeper
  • 9
    Operational difficulties
  • 5
    Terrible Packaging

What are some alternatives to Amazon SQS, RabbitMQ, Kafka?

Celery

Celery

Celery is an asynchronous task queue/job queue based on distributed message passing. It is focused on real-time operation, but supports scheduling as well.

NSQ

NSQ

NSQ is a realtime distributed messaging platform designed to operate at scale, handling billions of messages per day. It promotes distributed and decentralized topologies without single points of failure, enabling fault tolerance and high availability coupled with a reliable message delivery guarantee. See features & guarantees.

ActiveMQ

ActiveMQ

Apache ActiveMQ is fast, supports many Cross Language Clients and Protocols, comes with easy to use Enterprise Integration Patterns and many advanced features while fully supporting JMS 1.1 and J2EE 1.4. Apache ActiveMQ is released under the Apache 2.0 License.

ZeroMQ

ZeroMQ

The 0MQ lightweight messaging kernel is a library which extends the standard socket interfaces with features traditionally provided by specialised messaging middleware products. 0MQ sockets provide an abstraction of asynchronous message queues, multiple messaging patterns, message filtering (subscriptions), seamless access to multiple transport protocols and more.

Apache NiFi

Apache NiFi

An easy to use, powerful, and reliable system to process and distribute data. It supports powerful and scalable directed graphs of data routing, transformation, and system mediation logic.

Gearman

Gearman

Gearman allows you to do work in parallel, to load balance processing, and to call functions between languages. It can be used in a variety of applications, from high-availability web sites to the transport of database replication events.

Memphis

Memphis

Highly scalable and effortless data streaming platform. Made to enable developers and data teams to collaborate and build real-time and streaming apps fast.

IronMQ

IronMQ

An easy-to-use highly available message queuing service. Built for distributed cloud applications with critical messaging needs. Provides on-demand message queuing with advanced features and cloud-optimized performance.

Apache Pulsar

Apache Pulsar

Apache Pulsar is a distributed messaging solution developed and released to open source at Yahoo. Pulsar supports both pub-sub messaging and queuing in a platform designed for performance, scalability, and ease of development and operation.

Confluent

Confluent

It is a data streaming platform based on Apache Kafka: a full-scale streaming platform, capable of not only publish-and-subscribe, but also the storage and processing of data within the stream

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase