Kubeflow vs PredictionIO vs PyTorch

Need advice about which tool to choose?Ask the StackShare community!

Kubeflow

205
585
+ 1
18
PredictionIO

67
110
+ 1
8
PyTorch

1.6K
1.5K
+ 1
43
Decisions about Kubeflow, PredictionIO, and PyTorch

Pytorch is a famous tool in the realm of machine learning and it has already set up its own ecosystem. Tutorial documentation is really detailed on the official website. It can help us to create our deep learning model and allowed us to use GPU as the hardware support.

I have plenty of projects based on Pytorch and I am familiar with building deep learning models with this tool. I have used TensorFlow too but it is not dynamic. Tensorflow works on a static graph concept that means the user first has to define the computation graph of the model and then run the ML model, whereas PyTorch believes in a dynamic graph that allows defining/manipulating the graph on the go. PyTorch offers an advantage with its dynamic nature of creating graphs.

See more
Fabian Ulmer
Software Developer at Hestia · | 3 upvotes · 55.3K views

For my company, we may need to classify image data. Keras provides a high-level Machine Learning framework to achieve this. Specifically, CNN models can be compactly created with little code. Furthermore, already well-proven classifiers are available in Keras, which could be used as Transfer Learning for our use case.

We chose Keras over PyTorch, another Machine Learning framework, as our preliminary research showed that Keras is more compatible with .js. You can also convert a PyTorch model into TensorFlow.js, but it seems that Keras needs to be a middle step in between, which makes Keras a better choice.

See more
Xi Huang
Developer at University of Toronto · | 8 upvotes · 99.3K views

For data analysis, we choose a Python-based framework because of Python's simplicity as well as its large community and available supporting tools. We choose PyTorch over TensorFlow for our machine learning library because it has a flatter learning curve and it is easy to debug, in addition to the fact that our team has some existing experience with PyTorch. Numpy is used for data processing because of its user-friendliness, efficiency, and integration with other tools we have chosen. Finally, we decide to include Anaconda in our dev process because of its simple setup process to provide sufficient data science environment for our purposes. The trained model then gets deployed to the back end as a pickle.

See more

A large part of our product is training and using a machine learning model. As such, we chose one of the best coding languages, Python, for machine learning. This coding language has many packages which help build and integrate ML models. For the main portion of the machine learning, we chose PyTorch as it is one of the highest quality ML packages for Python. PyTorch allows for extreme creativity with your models while not being too complex. Also, we chose to include scikit-learn as it contains many useful functions and models which can be quickly deployed. Scikit-learn is perfect for testing models, but it does not have as much flexibility as PyTorch. We also include NumPy and Pandas as these are wonderful Python packages for data manipulation. Also for testing models and depicting data, we have chosen to use Matplotlib and seaborn, a package which creates very good looking plots. Matplotlib is the standard for displaying data in Python and ML. Whereas, seaborn is a package built on top of Matplotlib which creates very visually pleasing plots.

See more
Manage your open source components, licenses, and vulnerabilities
Learn More
Pros of Kubeflow
Pros of PredictionIO
Pros of PyTorch
  • 9
    System designer
  • 3
    Google backed
  • 3
    Customisation
  • 3
    Kfp dsl
  • 0
    Azure
  • 8
    Predict Future
  • 15
    Easy to use
  • 11
    Developer Friendly
  • 10
    Easy to debug
  • 7
    Sometimes faster than TensorFlow

Sign up to add or upvote prosMake informed product decisions

Cons of Kubeflow
Cons of PredictionIO
Cons of PyTorch
    Be the first to leave a con
      Be the first to leave a con
      • 3
        Lots of code
      • 1
        It eats poop

      Sign up to add or upvote consMake informed product decisions

      - No public GitHub repository available -
      - No public GitHub repository available -

      What is Kubeflow?

      The Kubeflow project is dedicated to making Machine Learning on Kubernetes easy, portable and scalable by providing a straightforward way for spinning up best of breed OSS solutions.

      What is PredictionIO?

      PredictionIO is an open source machine learning server for software developers to create predictive features, such as personalization, recommendation and content discovery.

      What is PyTorch?

      PyTorch is not a Python binding into a monolothic C++ framework. It is built to be deeply integrated into Python. You can use it naturally like you would use numpy / scipy / scikit-learn etc.

      Need advice about which tool to choose?Ask the StackShare community!

      What companies use Kubeflow?
      What companies use PredictionIO?
      What companies use PyTorch?

      Sign up to get full access to all the companiesMake informed product decisions

      What tools integrate with Kubeflow?
      What tools integrate with PredictionIO?
      What tools integrate with PyTorch?
        No integrations found

        Sign up to get full access to all the tool integrationsMake informed product decisions

        Blog Posts

        PythonDockerKubernetes+14
        12
        2761
        Dec 4 2019 at 8:01PM

        Pinterest

        KubernetesJenkinsTensorFlow+4
        5
        3470
        What are some alternatives to Kubeflow, PredictionIO, and PyTorch?
        TensorFlow
        TensorFlow is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API.
        Apache Spark
        Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.
        MLflow
        MLflow is an open source platform for managing the end-to-end machine learning lifecycle.
        Airflow
        Use Airflow to author workflows as directed acyclic graphs (DAGs) of tasks. The Airflow scheduler executes your tasks on an array of workers while following the specified dependencies. Rich command lines utilities makes performing complex surgeries on DAGs a snap. The rich user interface makes it easy to visualize pipelines running in production, monitor progress and troubleshoot issues when needed.
        Polyaxon
        An enterprise-grade open source platform for building, training, and monitoring large scale deep learning applications.
        See all alternatives