Hi! I am creating a scraping system in Django, which involves long running tasks between 1 minute & 1 Day. As I am new to Message Brokers and Task Queues, I need advice on which architecture to use for my system. ( Amazon SQS, RabbitMQ, or Celery). The system should be autoscalable using Kubernetes(K8) based on the number of pending tasks in the queue.

Amazon SQS
Hi, we are in a ZMQ set up in a push/pull pattern, and we currently start to have more traffic and cases that the service is unavailable or stuck. We want to: * Not loose messages in services outages * Safely restart service without losing messages (ZeroMQ seems to need to close the socket in the receiver before restart manually)
Do you have experience with this setup with ZeroMQ? Would you suggest RabbitMQ or Amazon SQS (we are in AWS setup) instead? Something else?
Thank you for your time
ZeroMQ is fast but you need to build build reliability yourself. There are a number of patterns described in the zeromq guide. I have used RabbitMQ before which gives lot of functionality out of the box, you can probably use the worker queues
example from the tutorial, it can also persists messages in the queue.
I haven't used Amazon SQS before. Another tool you could use is Kafka.
Amazon seems to offer a number of messaging solutions. The simplest is Amazon SQS, yes. Another is Amazon MQ if you wish to have a hosted RabbitMQ or ActiveMQ messaging platform that is compatible with JMS/AMQP. You will want to measure your needs against the constraints of your messaging scenarios. If you have a small team and you're already on AWS, a quick working solution would be to use the ready-to-go solutions from AWS. My guess is that it would cost more to hire (an) engineer(s) to build/maintain your messaging queue than to use the service-at-scale solutions of AWS. If you have a non-global messaging system you could also consider deploying your own small cluster using RabbitMQ as suggested by Shishir. Another excellent solution might be NATS.io which has a strong community, impressive performance, and is backed by CNCF.
I admit there are a lot of options -- if you wish to own and grow your messaging needs in house, then hire a team and start building. ZMQ is flexible but you will need to write the persistency module and adapt the clustering to your needs. Kafka is a resilient and distributed solution, but it requires an operations team to maintain and handle load-balancing. RabbitMQ seems to be the defacto for getting up and running but can eventually encounter clustering and scaling issues. And on the other hand, the giants offer ready-to-go messaging solutions that end up costing you little, but risk to vendor lock you if you're not careful.
I suppose I ultimately vote for taking the AWS solution -- but check the SLA and performance criteria of your service.
Both would do the trick, but there are some nuances. We work with both.
From the sound of it, your main focus is "not losing messages". In that case, I would go with RabbitMQ with a high availability policy (ha-mode=all) and a main/retry/error queue pattern.
Push messages to an exchange, which sends them to the main queue. If an error occurs, push the errored out message to the retry exchange, which forwards it to the retry queue. Give the retry queue a x-message-ttl and set the main exchange as a dead-letter-exchange. If your message has been retried several times, push it to the error exchange, where the message can remain until someone has time to look at it.
This is a very useful and resilient pattern that allows you to never lose messages. With the high availability policy, you make sure that if one of your rabbitmq nodes dies, another can take over and messages are already mirrored to it.
This is not really possible with SQS, because SQS is a lot more focused on throughput and scaling. Combined with SNS it can do interesting things like deduplication of messages and such. That said, one thing core to its design is that messages have a maximum retention time. The idea is that a message that has stayed in an SQS queue for a while serves no more purpose after a while, so it gets removed - so as to not block up any listener resources for a long time. You can also set up a DLQ here, but these similarly do not hold onto messages forever. Since you seem to depend on messages surviving at all cost, I would suggest that the scaling/throughput benefit of SQS does not outweigh the difference in approach to messages there.
I want to schedule a message. Amazon SQS provides a delay of 15 minutes, but I want it in some hours.
Example: Let's say a Message1 is consumed by a consumer A but somehow it failed inside the consumer. I would want to put it in a queue and retry after 4hrs. Can I do this in Amazon MQ? I have seen in some Amazon MQ videos saying scheduling messages can be done. But, I'm not sure how.
Mithiridi, I believe you are talking about two different things. 1. If you need to process messages with delays of more 15m or at specific times, it's not a good idea to use queues, independently of tool SQM, Rabbit or Amazon MQ. you should considerer another approach using a scheduled job. 2. For dead queues and policy retries RabbitMQ, for example, doesn't support your use case. https://medium.com/@kiennguyen88/rabbitmq-delay-retry-schedule-with-dead-letter-exchange-31fb25a440fc I'm not sure if that is possible SNS/SQS support, they have a maximum delay for delivery (maxDelayTarget) in seconds but it's not clear the number. You can check this out: https://docs.aws.amazon.com/sns/latest/dg/sns-message-delivery-retries.html
In 2012 we made the very difficult decision to entirely re-engineer our existing monolithic LAMP application from the ground up in order to address some growing concerns about it's long term viability as a platform.
Full application re-write is almost always never the answer, because of the risks involved. However the situation warranted drastic action as it was clear that the existing product was going to face severe scaling issues. We felt it better address these sooner rather than later and also take the opportunity to improve the international architecture and also to refactor the database in. order that it better matched the changes in core functionality.
PostgreSQL was chosen for its reputation as being solid ACID compliant database backend, it was available as an offering AWS RDS service which reduced the management overhead of us having to configure it ourselves. In order to reduce read load on the primary database we implemented an Elasticsearch layer for fast and scalable search operations. Synchronisation of these indexes was to be achieved through the use of Sidekiq's Redis based background workers on Amazon ElastiCache. Again the AWS solution here looked to be an easy way to keep our involvement in managing this part of the platform at a minimum. Allowing us to focus on our core business.
Rails ls was chosen for its ability to quickly get core functionality up and running, its MVC architecture and also its focus on Test Driven Development using RSpec and Selenium with Travis CI providing continual integration. We also liked Ruby for its terse, clean and elegant syntax. Though YMMV on that one!
Unicorn was chosen for its continual deployment and reputation as a reliable application server, nginx for its reputation as a fast and stable reverse-proxy. We also took advantage of the Amazon CloudFront CDN here to further improve performance by caching static assets globally.
We tried to strike a balance between having control over management and configuration of our core application with the convenience of being able to leverage AWS hosted services for ancillary functions (Amazon SES , Amazon SQS Amazon Route 53 all hosted securely inside Amazon VPC of course!).
Whilst there is some compromise here with potential vendor lock in, the tasks being performed by these ancillary services are no particularly specialised which should mitigate this risk. Furthermore we have already containerised the stack in our development using Docker environment, and looking to how best to bring this into production - potentially using Amazon EC2 Container Service
It's great to read your story, just curious that have you still using Ruby on Rails in your system till today?
We are in the process of building a modern content platform to deliver our content through various channels. We decided to go with Microservices architecture as we wanted scale. Microservice architecture style is an approach to developing an application as a suite of small independently deployable services built around specific business capabilities. You can gain modularity, extensive parallelism and cost-effective scaling by deploying services across many distributed servers. Microservices modularity facilitates independent updates/deployments, and helps to avoid single point of failure, which can help prevent large-scale outages. We also decided to use Event Driven Architecture pattern which is a popular distributed asynchronous architecture pattern used to produce highly scalable applications. The event-driven architecture is made up of highly decoupled, single-purpose event processing components that asynchronously receive and process events.
To build our #Backend capabilities we decided to use the following: 1. #Microservices - Java with Spring Boot , Node.js with ExpressJS and Python with Flask 2. #Eventsourcingframework - Amazon Kinesis , Amazon Kinesis Firehose , Amazon SNS , Amazon SQS, AWS Lambda 3. #Data - Amazon RDS , Amazon DynamoDB , Amazon S3 , MongoDB Atlas
To build #Webapps we decided to use Angular 2 with RxJS
#Devops - GitHub , Travis CI , Terraform , Docker , Serverless