Go

Go

Application and Data / Languages & Frameworks / Languages

Decision at Stream about Go, Stream, Python, Yarn, Babel, Node.js, ES6, JavaScript, Languages, FrameworksFullStack

Avatar of nparsons08
DeveloperEvangelist at Stream ·
GoGoStreamStreamPythonPythonYarnYarnBabelBabelNode.jsNode.jsES6ES6JavaScriptJavaScript
#Languages
#FrameworksFullStack

Winds 2.0 is an open source Podcast/RSS reader developed by Stream with a core goal to enable a wide range of developers to contribute.

We chose JavaScript because nearly every developer knows or can, at the very least, read JavaScript. With ES6 and Node.js v10.x.x, it’s become a very capable language. Async/Await is powerful and easy to use (Async/Await vs Promises). Babel allows us to experiment with next-generation JavaScript (features that are not in the official JavaScript spec yet). Yarn allows us to consistently install packages quickly (and is filled with tons of new tricks)

We’re using JavaScript for everything – both front and backend. Most of our team is experienced with Go and Python, so Node was not an obvious choice for this app.

Sure... there will be haters who refuse to acknowledge that there is anything remotely positive about JavaScript (there are even rants on Hacker News about Node.js); however, without writing completely in JavaScript, we would not have seen the results we did.

#FrameworksFullStack #Languages

29 upvotes·84.5K views

Decision at Segment about Datadog, TypeScript, Envoy, gRPC, Go, Observability, Reliability, Security, Json, REST, Framework

Avatar of nzoschke
Engineering Manager at Segment ·
DatadogDatadogTypeScriptTypeScriptEnvoyEnvoygRPCgRPCGoGo
#Observability
#Reliability
#Security
#Json
#REST
#Framework

We just launched the Segment Config API (try it out for yourself here) — a set of public REST APIs that enable you to manage your Segment configuration. Behind the scenes the Config API is built with Go , GRPC and Envoy.

At Segment, we build new services in Go by default. The language is simple so new team members quickly ramp up on a codebase. The tool chain is fast so developers get immediate feedback when they break code, tests or integrations with other systems. The runtime is fast so it performs great at scale.

For the newest round of APIs we adopted the GRPC service #framework.

The Protocol Buffer service definition language makes it easy to design type-safe and consistent APIs, thanks to ecosystem tools like the Google API Design Guide for API standards, uber/prototool for formatting and linting .protos and lyft/protoc-gen-validate for defining field validations, and grpc-gateway for defining REST mapping.

With a well designed .proto, its easy to generate a Go server interface and a TypeScript client, providing type-safe RPC between languages.

For the API gateway and RPC we adopted the Envoy service proxy.

The internet-facing segmentapis.com endpoint is an Envoy front proxy that rate-limits and authenticates every request. It then transcodes a #REST / #JSON request to an upstream GRPC request. The upstream GRPC servers are running an Envoy sidecar configured for Datadog stats.

The result is API #security , #reliability and consistent #observability through Envoy configuration, not code.

We experimented with Swagger service definitions, but the spec is sprawling and the generated clients and server stubs leave a lot to be desired. GRPC and .proto and the Go implementation feels better designed and implemented. Thanks to the GRPC tooling and ecosystem you can generate Swagger from .protos, but it’s effectively impossible to go the other way.

28 upvotes·1 comment·69.4K views

Decision at Soluto about Docker Swarm, Kubernetes, Visual Studio Code, Go, TypeScript, JavaScript, C#, F#, .NET

Avatar of Yshayy
Software Engineer ·

Our first experience with .NET core was when we developed our OSS feature management platform - Tweek (https://github.com/soluto/tweek). We wanted to create a solution that is able to run anywhere (super important for OSS), has excellent performance characteristics and can fit in a multi-container architecture. We decided to implement our rule engine processor in F# , our main service was implemented in C# and other components were built using JavaScript / TypeScript and Go.

Visual Studio Code worked really well for us as well, it worked well with all our polyglot services and the .Net core integration had great cross-platform developer experience (to be fair, F# was a bit trickier) - actually, each of our team members used a different OS (Ubuntu, macos, windows). Our production deployment ran for a time on Docker Swarm until we've decided to adopt Kubernetes with almost seamless migration process.

After our positive experience of running .Net core workloads in containers and developing Tweek's .Net services on non-windows machines, C# had gained back some of its popularity (originally lost to Node.js), and other teams have been using it for developing microservices, k8s sidecars (like https://github.com/Soluto/airbag), cli tools, serverless functions and other projects...

26 upvotes·2 comments·128.7K views

Decision at Thumbtack about C, Go, Rust, Python

Avatar of marcoalmeida

One important decision for delivering a platform independent solution with low memory footprint and minimal dependencies was the choice of the programming language. We considered a few from Python (there was already a reasonably large Python code base at Thumbtack), to Go (we were taking our first steps with it), and even Rust (too immature at the time).

We ended up writing it in C. It was easy to meet all requirements with only one external dependency for implementing the web server, clearly no challenges running it on any of the Linux distributions we were maintaining, and arguably the implementation with the smallest memory footprint given the choices above.

15 upvotes·43.1K views

Decision at Stitch about Go, Clojure, JavaScript, Python, Kubernetes, AWS OpsWorks, Amazon EC2, Amazon Redshift, Amazon S3, Amazon RDS

Avatar of jakestein
CEO at Stitch ·

Stitch is run entirely on AWS. All of our transactional databases are run with Amazon RDS, and we rely on Amazon S3 for data persistence in various stages of our pipeline. Our product integrates with Amazon Redshift as a data destination, and we also use Redshift as an internal data warehouse (powered by Stitch, of course).

The majority of our services run on stateless Amazon EC2 instances that are managed by AWS OpsWorks. We recently introduced Kubernetes into our infrastructure to run the scheduled jobs that execute Singer code to extract data from various sources. Although we tend to be wary of shiny new toys, Kubernetes has proven to be a good fit for this problem, and its stability, strong community and helpful tooling have made it easy for us to incorporate into our operations.

While we continue to be happy with Clojure for our internal services, we felt that its relatively narrow adoption could impede Singer's growth. We chose Python both because it is well suited to the task, and it seems to have reached critical mass among data engineers. All that being said, the Singer spec is language agnostic, and integrations and libraries have been developed in JavaScript, Go, and Clojure.

13 upvotes·52.5K views

Decision at Uber Technologies about Apache Spark, C#, OpenShift, JavaScript, Kubernetes, C++, Go, Node.js, Java, Python, Jaeger

Avatar of conor
Tech Brand Mgr, Office of CTO at Uber ·

How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:

Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.

Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:

https://eng.uber.com/distributed-tracing/

(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)

Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark

10 upvotes·1 comment·338K views

Decision about PagerDuty, Slack, Go, PHP, Java, Python, Ruby, Node.js, Sqreen

Avatar of paulblei

I chose Sqreen because it provides an out-of-the-box Security as a Service solution to protect my customer data. I get full visibility over my application security in real-time and I reduce my risk against the most common threats. My customers are happy and I don't need to spend any engineering resources or time on this. We're only alerted when our attention is required and the data that is provided helps engineering teams easily remediate vulnerabilities. The platform grows with us and will allow us to have all the right tools in place when our first security engineer joins the company. Advanced security protections against business logic threats can then be implemented.

Installation was super easy on my Node.js and Ruby apps. But Sqreen also supports Python , Java , PHP and soon Go .

It integrates well with the tools I'm using every day Slack , PagerDuty and more.

10 upvotes·100.2K views

Decision at Epsagon about AWS Lambda, GitHub, Java, Go, Node.js, npm, Serverless, Python

Avatar of nshap

At Epsagon, we use hundreds of AWS Lambda functions, most of them are written in Python, and the Serverless Framework to pack and deploy them. One of the issues we've encountered is the difficulty to package external libraries into the Lambda environment using the Serverless Framework. This limitation is probably by design since the external code your Lambda needs can be usually included with a package manager.

In order to overcome this issue, we've developed a tool, which we also published as open-source (see link below), which automatically packs these libraries using a simple npm package and a YAML configuration file. Support for Node.js, Go, and Java will be available soon.

The GitHub respoitory: https://github.com/epsagon/serverless-package-external

10 upvotes·1 comment·67.9K views

Decision at Kokoen GmbH about ExpressJS, Node.js, JavaScript, MongoDB, Go, MySQL, Laravel, PHP

Avatar of ASkenny
CEO at Kokoen GmbH ·

Back at the start of 2017, we decided to create a web-based tool for the SEO OnPage analysis of our clients' websites. We had over 2.000 websites to analyze, so we had to perform thousands of requests to get every single page from those websites, process the information and save the big amounts of data somewhere.

Very soon we realized that the initial chosen script language and database, PHP, Laravel and MySQL, was not going to be able to cope efficiently with such a task.

By that time, we were doing some experiments for other projects with a language we had recently get to know, Go , so we decided to get a try and code the crawler using it. It was fantastic, we could process much more data with way less CPU power and in less time. By using the concurrency abilites that the language has to offers, we could also do more Http requests in less time.

Unfortunately, I have no comparison numbers to show about the performance differences between Go and PHP since the difference was so clear from the beginning and that we didn't feel the need to do further comparison tests nor document it. We just switched fully to Go.

There was still a problem: despite the big amount of Data we were generating, MySQL was performing very well, but as we were adding more and more features to the software and with those features more and more different type of data to save, it was a nightmare for the database architects to structure everything correctly on the database, so it was clear what we had to do next: switch to a NoSQL database. So we switched to MongoDB, and it was also fantastic: we were expending almost zero time in thinking how to structure the Database and the performance also seemed to be better, but again, I have no comparison numbers to show due to the lack of time.

We also decided to switch the website from PHP and Laravel to JavaScript and Node.js and ExpressJS since working with the JSON Data that we were saving now in the Database would be easier.

As of now, we don't only use the tool intern but we also opened it for everyone to use for free: https://tool-seo.com

10 upvotes·1 comment·50.3K views

Decision at Twilio SendGrid about Go, Perl, Docker, ContinuousIntegration, CodeCollaborationVersionControl

Avatar of sethgrid
Principal Software Developer at SendGrid ·
GoGoPerlPerlDockerDocker
#ContinuousIntegration
#CodeCollaborationVersionControl

In addition to our fancy Docker setup, we have captured and sanitized production logs for the behavior of our legacy Perl MTA, and we can test that the log output from the new Go version behaves the same way as the old version. These tests are set up to allow us to switch between the legacy and new version of the MTA and ensure that both systems behave in a legacy-compatible way. Not only can we ensure that we operate against a variety of issues we've seen over time from inboxes, but we know that the newest version of our MTA continues to cover all the same expected behaviors of the legacy version. #CodeCollaborationVersionControl #ContinuousIntegration

10 upvotes·11.3K views