R

R

Application and Data / Languages & Frameworks / Languages

Decision at Stitch Fix about Amazon EC2 Container Service, Docker, PyTorch, R, Python, Presto, Apache Spark, Amazon S3, PostgreSQL, Kafka, Data, DataStack, DataScience, ML, Etl, AWS

Avatar of ecolson
Chief Algorithms Officer at Stitch Fix

The algorithms and data infrastructure at Stitch Fix is housed in #AWS. Data acquisition is split between events flowing through Kafka, and periodic snapshots of PostgreSQL DBs. We store data in an Amazon S3 based data warehouse. Apache Spark on Yarn is our tool of choice for data movement and #ETL. Because our storage layer (s3) is decoupled from our processing layer, we are able to scale our compute environment very elastically. We have several semi-permanent, autoscaling Yarn clusters running to serve our data processing needs. While the bulk of our compute infrastructure is dedicated to algorithmic processing, we also implemented Presto for adhoc queries and dashboards.

Beyond data movement and ETL, most #ML centric jobs (e.g. model training and execution) run in a similarly elastic environment as containers running Python and R code on Amazon EC2 Container Service clusters. The execution of batch jobs on top of ECS is managed by Flotilla, a service we built in house and open sourced (see https://github.com/stitchfix/flotilla-os).

At Stitch Fix, algorithmic integrations are pervasive across the business. We have dozens of data products actively integrated systems. That requires serving layer that is robust, agile, flexible, and allows for self-service. Models produced on Flotilla are packaged for deployment in production using Khan, another framework we've developed internally. Khan provides our data scientists the ability to quickly productionize those models they've developed with open source frameworks in Python 3 (e.g. PyTorch, sklearn), by automatically packaging them as Docker containers and deploying to Amazon ECS. This provides our data scientist a one-click method of getting from their algorithms to production. We then integrate those deployments into a service mesh, which allows us to A/B test various implementations in our product.

For more info:

#DataScience #DataStack #Data

10 upvotes4.6K views

Decision about R

Avatar of ralic

Connect to database, data analytics, draw diagram. Machine Learning application, and also used Spark-R for big data processing. R

1 upvote4 views

Decision about R

Avatar of tinogehlert4783
Data Scientist at Viessmann

Visualisation of air quality in various rooms by RShiny (hosted free on shinyapps.io) R

1 upvote3 views

Decision about R

Avatar of benyomin

What are my other choices for a vectorized statistics language. Professor was pushing SAS Jump (or was that SPSS) with a menu-driven point and click approach. (Reproducibility can still be accomplished, you publish the script generated by all your clicks.) But I want to type everything, great online tutorials for R. I think I made the right pick. R

1 upvote3 views