What is Helm and what are its top alternatives?
Helm is a package manager for Kubernetes that allows users to define, install, and manage applications within Kubernetes clusters. It simplifies the deployment process by enabling users to bundle their applications into charts for easy sharing and deployment. However, Helm has limitations such as lack of fine-grained security controls and the potential for chart repository vulnerabilities.
- Kustomize: Kustomize is a native Kubernetes configuration management tool that allows users to customize, patch, and manage application configurations. Key features include declarative configuration, support for multiple environments, and integration with Kubernetes APIs. Pros include simplicity and flexibility, while cons include a steeper learning curve for new users compared to Helm.
- Kubeform: Kubeform is an open-source Kubernetes operator that aims to simplify the management and operation of infrastructure resources on Kubernetes. Key features include infrastructure as code capabilities, support for various cloud providers, and automatic resource provisioning. Pros include enhanced automation and scalability, while cons include potential compatibility issues with certain Kubernetes configurations.
- Kustomize Controller: Kustomize Controller is a Kubernetes controller that extends the functionality of Kustomize by automating the process of applying configurations to Kubernetes clusters. Key features include continuous configuration management, dynamic resource updates, and integration with GitOps workflows. Pros include enhanced automation and version control, while cons include potential complexity for larger deployments.
- Jsonnet: Jsonnet is a data templating language that allows users to manage complex configurations with ease. Key features include a rich set of built-in functions, support for modular design, and compatibility with Kubernetes resources. Pros include flexibility and scalability, while cons include a learning curve for users unfamiliar with Jsonnet syntax.
- Pulumi: Pulumi is an infrastructure as code tool that enables users to define, deploy, and manage cloud infrastructure resources using familiar programming languages. Key features include multi-cloud support, policy as code capabilities, and integration with popular CI/CD tools. Pros include ease of use and extensibility, while cons include potential performance overhead compared to Helm.
- Skaffold: Skaffold is a command-line tool that automates the development workflow for Kubernetes applications. Key features include rapid iterative development, support for different build strategies, and integration with local development environments. Pros include improved developer productivity and faster deployment cycles, while cons include potential resource overhead during builds.
- Kubeapps: Kubeapps is a web-based UI for Kubernetes that simplifies the deployment and management of applications in a cluster. Key features include a user-friendly interface, support for Helm charts, and integration with popular repositories. Pros include ease of use for beginners and advanced deployment options, while cons include potential scalability limitations for large clusters.
- Helmfile: Helmfile is a declarative specification tool for installing Helm charts with support for dependencies and environment-specific configurations. Key features include simplified chart management, support for different environments, and integration with version control systems. Pros include enhanced control over deployments and configuration management, while cons include potential complexity for users new to declarative workflows.
- Flux: Flux is a continuous delivery tool for Kubernetes that automates the deployment and monitoring of applications. Key features include GitOps workflows, automated syncs, and compatibility with Helm charts. Pros include enhanced reliability and version control, while cons include potential configuration overhead for complex deployments.
- Kubeval: Kubeval is a command-line tool for validating Kubernetes configuration files against schema definitions. Key features include support for custom validation rules, integration with CI/CD pipelines, and compatibility with various Kubernetes versions. Pros include improved configuration accuracy and reliability, while cons include potential limitations in complex validation scenarios.
Top Alternatives to Helm
- Terraform
With Terraform, you describe your complete infrastructure as code, even as it spans multiple service providers. Your servers may come from AWS, your DNS may come from CloudFlare, and your database may come from Heroku. Terraform will build all these resources across all these providers in parallel. ...
- Rancher
Rancher is an open source container management platform that includes full distributions of Kubernetes, Apache Mesos and Docker Swarm, and makes it simple to operate container clusters on any cloud or infrastructure platform. ...
- Ansible
Ansible is an IT automation tool. It can configure systems, deploy software, and orchestrate more advanced IT tasks such as continuous deployments or zero downtime rolling updates. Ansible’s goals are foremost those of simplicity and maximum ease of use. ...
- Kubernetes
Kubernetes is an open source orchestration system for Docker containers. It handles scheduling onto nodes in a compute cluster and actively manages workloads to ensure that their state matches the users declared intentions. ...
- Docker
The Docker Platform is the industry-leading container platform for continuous, high-velocity innovation, enabling organizations to seamlessly build and share any application — from legacy to what comes next — and securely run them anywhere ...
- jQuery
jQuery is a cross-platform JavaScript library designed to simplify the client-side scripting of HTML. ...
- React
Lots of people use React as the V in MVC. Since React makes no assumptions about the rest of your technology stack, it's easy to try it out on a small feature in an existing project. ...
- AngularJS
AngularJS lets you write client-side web applications as if you had a smarter browser. It lets you use good old HTML (or HAML, Jade and friends!) as your template language and lets you extend HTML’s syntax to express your application’s components clearly and succinctly. It automatically synchronizes data from your UI (view) with your JavaScript objects (model) through 2-way data binding. ...
Helm alternatives & related posts
Terraform
- Infrastructure as code121
- Declarative syntax73
- Planning45
- Simple28
- Parallelism24
- Well-documented8
- Cloud agnostic8
- It's like coding your infrastructure in simple English6
- Immutable infrastructure6
- Platform agnostic5
- Extendable4
- Automation4
- Automates infrastructure deployments4
- Portability4
- Lightweight2
- Scales to hundreds of hosts2
- Doesn't have full support to GKE1
related Terraform posts
Context: I wanted to create an end to end IoT data pipeline simulation in Google Cloud IoT Core and other GCP services. I never touched Terraform meaningfully until working on this project, and it's one of the best explorations in my development career. The documentation and syntax is incredibly human-readable and friendly. I'm used to building infrastructure through the google apis via Python , but I'm so glad past Sung did not make that decision. I was tempted to use Google Cloud Deployment Manager, but the templates were a bit convoluted by first impression. I'm glad past Sung did not make this decision either.
Solution: Leveraging Google Cloud Build Google Cloud Run Google Cloud Bigtable Google BigQuery Google Cloud Storage Google Compute Engine along with some other fun tools, I can deploy over 40 GCP resources using Terraform!
Check Out My Architecture: CLICK ME
Check out the GitHub repo attached
We recently moved our main applications from Heroku to Kubernetes . The 3 main driving factors behind the switch were scalability (database size limits), security (the inability to set up PostgreSQL instances in private networks), and costs (GCP is cheaper for raw computing resources).
We prefer using managed services, so we are using Google Kubernetes Engine with Google Cloud SQL for PostgreSQL for our PostgreSQL databases and Google Cloud Memorystore for Redis . For our CI/CD pipeline, we are using CircleCI and Google Cloud Build to deploy applications managed with Helm . The new infrastructure is managed with Terraform .
Read the blog post to go more in depth.
- Easy to use103
- Open source and totally free79
- Multi-host docker-compose support63
- Load balancing and health check included58
- Simple58
- Rolling upgrades, green/blue upgrades feature44
- Dns and service discovery out-of-the-box42
- Only requires docker37
- Multitenant and permission management34
- Easy to use and feature rich29
- Cross cloud compatible11
- Does everything needed for a docker infrastructure11
- Simple and powerful8
- Next-gen platform8
- Very Docker-friendly7
- Support Kubernetes and Swarm6
- Application catalogs with stack templates (wizards)6
- Supports Apache Mesos, Docker Swarm, and Kubernetes6
- Rolling and blue/green upgrades deployments6
- High Availability service: keeps your app up 24/76
- Easy to use service catalog5
- Very intuitive UI4
- IaaS-vendor independent, supports hybrid/multi-cloud4
- Awesome support4
- Scalable3
- Requires less infrastructure requirements2
- Hosting Rancher can be complicated10
related Rancher posts
Ansible
- Agentless284
- Great configuration210
- Simple199
- Powerful176
- Easy to learn155
- Flexible69
- Doesn't get in the way of getting s--- done55
- Makes sense35
- Super efficient and flexible30
- Powerful27
- Dynamic Inventory11
- Backed by Red Hat9
- Works with AWS7
- Cloud Oriented6
- Easy to maintain6
- Vagrant provisioner4
- Simple and powerful4
- Multi language4
- Simple4
- Because SSH4
- Procedural or declarative, or both4
- Easy4
- Consistency3
- Well-documented2
- Masterless2
- Debugging is simple2
- Merge hash to get final configuration similar to hiera2
- Fast as hell2
- Manage any OS1
- Work on windows, but difficult to manage1
- Certified Content1
- Dangerous8
- Hard to install5
- Doesn't Run on Windows3
- Bloated3
- Backward compatibility3
- No immutable infrastructure2
related Ansible posts
Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).
It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up
or vagrant reload
we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.
I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up
, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.
We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.
If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.
The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).
Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.
Heroku was a decent choice to start a business, but at some point our platform was too big, too complex & too heterogenic, so Heroku started to be a constraint, not a benefit. First, we've started containerizing our apps with Docker to eliminate "works in my machine" syndrome & uniformize the environment setup. The first orchestration was composed with Docker Compose , but at some point it made sense to move it to Kubernetes. Fortunately, we've made a very good technical decision when starting our work with containers - all the container configuration & provisions HAD (since the beginning) to be done in code (Infrastructure as Code) - we've used Terraform & Ansible for that (correspondingly). This general trend of containerisation was accompanied by another, parallel & equally big project: migrating environments from Heroku to AWS: using Amazon EC2 , Amazon EKS, Amazon S3 & Amazon RDS.
Kubernetes
- Leading docker container management solution166
- Simple and powerful129
- Open source107
- Backed by google76
- The right abstractions58
- Scale services25
- Replication controller20
- Permission managment11
- Supports autoscaling9
- Simple8
- Cheap8
- Self-healing6
- Open, powerful, stable5
- Reliable5
- No cloud platform lock-in5
- Promotes modern/good infrascture practice5
- Scalable4
- Quick cloud setup4
- Custom and extensibility3
- Captain of Container Ship3
- Cloud Agnostic3
- Backed by Red Hat3
- Runs on azure3
- A self healing environment with rich metadata3
- Everything of CaaS2
- Gke2
- Golang2
- Easy setup2
- Expandable2
- Sfg2
- Steep learning curve16
- Poor workflow for development15
- Orchestrates only infrastructure8
- High resource requirements for on-prem clusters4
- Too heavy for simple systems2
- Additional vendor lock-in (Docker)1
- More moving parts to secure1
- Additional Technology Overhead1
related Kubernetes posts
How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:
Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.
Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:
https://eng.uber.com/distributed-tracing/
(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)
Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark
Our first experience with .NET core was when we developed our OSS feature management platform - Tweek (https://github.com/soluto/tweek). We wanted to create a solution that is able to run anywhere (super important for OSS), has excellent performance characteristics and can fit in a multi-container architecture. We decided to implement our rule engine processor in F# , our main service was implemented in C# and other components were built using JavaScript / TypeScript and Go.
Visual Studio Code worked really well for us as well, it worked well with all our polyglot services and the .Net core integration had great cross-platform developer experience (to be fair, F# was a bit trickier) - actually, each of our team members used a different OS (Ubuntu, macos, windows). Our production deployment ran for a time on Docker Swarm until we've decided to adopt Kubernetes with almost seamless migration process.
After our positive experience of running .Net core workloads in containers and developing Tweek's .Net services on non-windows machines, C# had gained back some of its popularity (originally lost to Node.js), and other teams have been using it for developing microservices, k8s sidecars (like https://github.com/Soluto/airbag), cli tools, serverless functions and other projects...
Docker
- Rapid integration and build up823
- Isolation692
- Open source521
- Testability and reproducibility505
- Lightweight460
- Standardization218
- Scalable185
- Upgrading / downgrading / application versions106
- Security88
- Private paas environments85
- Portability34
- Limit resource usage26
- Game changer17
- I love the way docker has changed virtualization16
- Fast14
- Concurrency12
- Docker's Compose tools8
- Fast and Portable6
- Easy setup6
- Because its fun5
- Makes shipping to production very simple4
- It's dope3
- Highly useful3
- Does a nice job hogging memory2
- Open source and highly configurable2
- Simplicity, isolation, resource effective2
- MacOS support FAKE2
- Its cool2
- Docker hub for the FTW2
- HIgh Throughput2
- Very easy to setup integrate and build2
- Package the environment with the application2
- Super2
- Asdfd0
- New versions == broken features8
- Unreliable networking6
- Documentation not always in sync6
- Moves quickly4
- Not Secure3
related Docker posts
Our whole DevOps stack consists of the following tools:
- GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
- Respectively Git as revision control system
- SourceTree as Git GUI
- Visual Studio Code as IDE
- CircleCI for continuous integration (automatize development process)
- Prettier / TSLint / ESLint as code linter
- SonarQube as quality gate
- Docker as container management (incl. Docker Compose for multi-container application management)
- VirtualBox for operating system simulation tests
- Kubernetes as cluster management for docker containers
- Heroku for deploying in test environments
- nginx as web server (preferably used as facade server in production environment)
- SSLMate (using OpenSSL) for certificate management
- Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
- PostgreSQL as preferred database system
- Redis as preferred in-memory database/store (great for caching)
The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:
- Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
- Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
- Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
- Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
- Scalability: All-in-one framework for distributed systems.
- Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).
It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up
or vagrant reload
we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.
I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up
, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.
We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.
If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.
The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).
Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.
- Cross-browser1.3K
- Dom manipulation957
- Power809
- Open source660
- Plugins610
- Easy459
- Popular395
- Feature-rich350
- Html5281
- Light weight227
- Simple93
- Great community84
- CSS3 Compliant79
- Mobile friendly69
- Fast67
- Intuitive43
- Swiss Army knife for webdev42
- Huge Community35
- Easy to learn11
- Clean code4
- Because of Ajax request :)3
- Powerful2
- Nice2
- Just awesome2
- Used everywhere2
- Improves productivity1
- Javascript1
- Easy Setup1
- Open Source, Simple, Easy Setup1
- It Just Works1
- Industry acceptance1
- Allows great manipulation of HTML and CSS1
- Widely Used1
- I love jQuery1
- Large size6
- Sometimes inconsistent API5
- Encourages DOM as primary data source5
- Live events is overly complex feature2
related jQuery posts
The client-side stack of Shopify Admin has been a long journey. It started with HTML templates, jQuery and Prototype. We moved to Batman.js, our in-house Single-Page-Application framework (SPA), in 2013. Then, we re-evaluated our approach and moved back to statically rendered HTML and vanilla JavaScript. As the front-end ecosystem matured, we felt that it was time to rethink our approach again. Last year, we started working on moving Shopify Admin to React and TypeScript.
Many things have changed since the days of jQuery and Batman. JavaScript execution is much faster. We can easily render our apps on the server to do less work on the client, and the resources and tooling for developers are substantially better with React than we ever had with Batman.
#FrameworksFullStack #Languages
I'm planning to create a web application and also a mobile application to provide a very good shopping experience to the end customers. Shortly, my application will be aggregate the product details from difference sources and giving a clear picture to the user that when and where to buy that product with best in Quality and cost.
I have planned to develop this in many milestones for adding N number of features and I have picked my first part to complete the core part (aggregate the product details from different sources).
As per my work experience and knowledge, I have chosen the followings stacks to this mission.
UI: I would like to develop this application using React, React Router and React Native since I'm a little bit familiar on this and also most importantly these will help on developing both web and mobile apps. In addition, I'm gonna use the stacks JavaScript, jQuery, jQuery UI, jQuery Mobile, Bootstrap wherever required.
Service: I have planned to use Java as the main business layer language as I have 7+ years of experience on this I believe I can do better work using Java than other languages. In addition, I'm thinking to use the stacks Node.js.
Database and ORM: I'm gonna pick MySQL as DB and Hibernate as ORM since I have a piece of good knowledge and also work experience on this combination.
Search Engine: I need to deal with a large amount of product data and it's in-detailed info to provide enough details to end user at the same time I need to focus on the performance area too. so I have decided to use Solr as a search engine for product search and suggestions. In addition, I'm thinking to replace Solr by Elasticsearch once explored/reviewed enough about Elasticsearch.
Host: As of now, my plan to complete the application with decent features first and deploy it in a free hosting environment like Docker and Heroku and then once it is stable then I have planned to use the AWS products Amazon S3, EC2, Amazon RDS and Amazon Route 53. I'm not sure about Microsoft Azure that what is the specialty in it than Heroku and Amazon EC2 Container Service. Anyhow, I will do explore these once again and pick the best suite one for my requirement once I reached this level.
Build and Repositories: I have decided to choose Apache Maven and Git as these are my favorites and also so popular on respectively build and repositories.
Additional Utilities :) - I would like to choose Codacy for code review as their Startup plan will be very helpful to this application. I'm already experienced with Google CheckStyle and SonarQube even I'm looking something on Codacy.
Happy Coding! Suggestions are welcome! :)
Thanks, Ganesa
- Components832
- Virtual dom673
- Performance578
- Simplicity508
- Composable442
- Data flow186
- Declarative166
- Isn't an mvc framework128
- Reactive updates120
- Explicit app state115
- JSX50
- Learn once, write everywhere29
- Easy to Use22
- Uni-directional data flow21
- Works great with Flux Architecture17
- Great perfomance11
- Javascript10
- Built by Facebook9
- TypeScript support8
- Server Side Rendering6
- Speed6
- Feels like the 90s5
- Excellent Documentation5
- Props5
- Functional5
- Easy as Lego5
- Closer to standard JavaScript and HTML than others5
- Cross-platform5
- Easy to start5
- Hooks5
- Awesome5
- Scalable5
- Super easy4
- Allows creating single page applications4
- Server side views4
- Sdfsdfsdf4
- Start simple4
- Strong Community4
- Fancy third party tools4
- Scales super well4
- Has arrow functions3
- Beautiful and Neat Component Management3
- Just the View of MVC3
- Simple, easy to reason about and makes you productive3
- Fast evolving3
- SSR3
- Great migration pathway for older systems3
- Rich ecosystem3
- Simple3
- Has functional components3
- Every decision architecture wise makes sense3
- Very gentle learning curve3
- Split your UI into components with one true state2
- Image upload2
- Permissively-licensed2
- Fragments2
- Sharable2
- Recharts2
- HTML-like2
- React hooks1
- Datatables1
- Requires discipline to keep architecture organized41
- No predefined way to structure your app30
- Need to be familiar with lots of third party packages29
- JSX13
- Not enterprise friendly10
- One-way binding only6
- State consistency with backend neglected3
- Bad Documentation3
- Error boundary is needed2
- Paradigms change too fast2
related React posts
I was building a personal project that I needed to store items in a real time database. I am more comfortable with my Frontend skills than my backend so I didn't want to spend time building out anything in Ruby or Go.
I stumbled on Firebase by #Google, and it was really all I needed. It had realtime data, an area for storing file uploads and best of all for the amount of data I needed it was free!
I built out my application using tools I was familiar with, React for the framework, Redux.js to manage my state across components, and styled-components for the styling.
Now as this was a project I was just working on in my free time for fun I didn't really want to pay for hosting. I did some research and I found Netlify. I had actually seen them at #ReactRally the year before and deployed a Gatsby site to Netlify already.
Netlify was very easy to setup and link to my GitHub account you select a repo and pretty much with very little configuration you have a live site that will deploy every time you push to master.
With the selection of these tools I was able to build out my application, connect it to a realtime database, and deploy to a live environment all with $0 spent.
If you're looking to build out a small app I suggest giving these tools a go as you can get your idea out into the real world for absolutely no cost.
Your tech stack is solid for building a real-time messaging project.
React and React Native are excellent choices for the frontend, especially if you want to have both web and mobile versions of your application share code.
ExpressJS is an unopinionated framework that affords you the flexibility to use it's features at your term, which is a good start. However, I would recommend you explore Sails.js as well. Sails.js is built on top of Express.js and it provides additional features out of the box, especially the Websocket integration that your project requires.
Don't forget to set up Graphql codegen, this would improve your dev experience (Add Typescript, if you can too).
I don't know much about databases but you might want to consider using NO-SQL. I used Firebase real-time db and aws dynamo db on a few of my personal projects and I love they're easy to work with and offer more flexibility for a chat application.
- Quick to develop889
- Great mvc589
- Powerful573
- Restful520
- Backed by google505
- Two-way data binding349
- Javascript343
- Open source329
- Dependency injection307
- Readable197
- Fast75
- Directives65
- Great community63
- Free57
- Extend html vocabulary38
- Components29
- Easy to test26
- Easy to learn25
- Easy to templates24
- Great documentation23
- Easy to start21
- Awesome19
- Light weight18
- Angular 2.015
- Efficient14
- Javascript mvw framework14
- Great extensions14
- Easy to prototype with11
- High performance9
- Coffeescript9
- Two-way binding8
- Lots of community modules8
- Mvc8
- Easy to e2e7
- Clean and keeps code readable7
- One of the best frameworks6
- Easy for small applications6
- Works great with jquery5
- Fast development5
- I do not touch DOM4
- The two-way Data Binding is awesome4
- Hierarchical Data Structure3
- Be a developer, not a plumber.3
- Declarative programming3
- Typescript3
- Dart3
- Community3
- Fkin awesome2
- Opinionated in the right areas2
- Supports api , easy development2
- Common Place2
- Very very useful and fast framework for development2
- Linear learning curve2
- Great2
- Amazing community support2
- Readable code2
- Programming fun again2
- The powerful of binding, routing and controlling routes2
- Scopes2
- Consistency with backend architecture if using Nest2
- Fk react, all my homies hate react1
- Complex12
- Event Listener Overload3
- Dependency injection3
- Hard to learn2
- Learning Curve2
related AngularJS posts
Our whole Node.js backend stack consists of the following tools:
- Lerna as a tool for multi package and multi repository management
- npm as package manager
- NestJS as Node.js framework
- TypeScript as programming language
- ExpressJS as web server
- Swagger UI for visualizing and interacting with the API’s resources
- Postman as a tool for API development
- TypeORM as object relational mapping layer
- JSON Web Token for access token management
The main reason we have chosen Node.js over PHP is related to the following artifacts:
- Made for the web and widely in use: Node.js is a software platform for developing server-side network services. Well-known projects that rely on Node.js include the blogging software Ghost, the project management tool Trello and the operating system WebOS. Node.js requires the JavaScript runtime environment V8, which was specially developed by Google for the popular Chrome browser. This guarantees a very resource-saving architecture, which qualifies Node.js especially for the operation of a web server. Ryan Dahl, the developer of Node.js, released the first stable version on May 27, 2009. He developed Node.js out of dissatisfaction with the possibilities that JavaScript offered at the time. The basic functionality of Node.js has been mapped with JavaScript since the first version, which can be expanded with a large number of different modules. The current package managers (npm or Yarn) for Node.js know more than 1,000,000 of these modules.
- Fast server-side solutions: Node.js adopts the JavaScript "event-loop" to create non-blocking I/O applications that conveniently serve simultaneous events. With the standard available asynchronous processing within JavaScript/TypeScript, highly scalable, server-side solutions can be realized. The efficient use of the CPU and the RAM is maximized and more simultaneous requests can be processed than with conventional multi-thread servers.
- A language along the entire stack: Widely used frameworks such as React or AngularJS or Vue.js, which we prefer, are written in JavaScript/TypeScript. If Node.js is now used on the server side, you can use all the advantages of a uniform script language throughout the entire application development. The same language in the back- and frontend simplifies the maintenance of the application and also the coordination within the development team.
- Flexibility: Node.js sets very few strict dependencies, rules and guidelines and thus grants a high degree of flexibility in application development. There are no strict conventions so that the appropriate architecture, design structures, modules and features can be freely selected for the development.
Our whole Vue.js frontend stack (incl. SSR) consists of the following tools:
- Nuxt.js consisting of Vue CLI, Vue Router, vuex, Webpack and Sass (Bundler for HTML5, CSS 3), Babel (Transpiler for JavaScript),
- Vue Styleguidist as our style guide and pool of developed Vue.js components
- Vuetify as Material Component Framework (for fast app development)
- TypeScript as programming language
- Apollo / GraphQL (incl. GraphiQL) for data access layer (https://apollo.vuejs.org/)
- ESLint, TSLint and Prettier for coding style and code analyzes
- Jest as testing framework
- Google Fonts and Font Awesome for typography and icon toolkit
- NativeScript-Vue for mobile development
The main reason we have chosen Vue.js over React and AngularJS is related to the following artifacts:
- Empowered HTML. Vue.js has many similar approaches with Angular. This helps to optimize HTML blocks handling with the use of different components.
- Detailed documentation. Vue.js has very good documentation which can fasten learning curve for developers.
- Adaptability. It provides a rapid switching period from other frameworks. It has similarities with Angular and React in terms of design and architecture.
- Awesome integration. Vue.js can be used for both building single-page applications and more difficult web interfaces of apps. Smaller interactive parts can be easily integrated into the existing infrastructure with no negative effect on the entire system.
- Large scaling. Vue.js can help to develop pretty large reusable templates.
- Tiny size. Vue.js weights around 20KB keeping its speed and flexibility. It allows reaching much better performance in comparison to other frameworks.