Elasticsearch

Elasticsearch

Utilities / Application Utilities / Search as a Service

Decision at SmartZip about Amazon DynamoDB, Ruby, Node.js, AWS Lambda, New Relic, Amazon Elasticsearch Service, Elasticsearch, Superset, Amazon Quicksight, Amazon Redshift, Zapier, Segment, Amazon CloudFront, Memcached, Amazon ElastiCache, Amazon RDS for Aurora, MySQL, Amazon RDS, Amazon S3, Docker, Capistrano, AWS Elastic Beanstalk, Rails API, Rails, Algolia

Avatar of juliendefrance
Full Stack Engineering Manager at ValiMail ·

Back in 2014, I was given an opportunity to re-architect SmartZip Analytics platform, and flagship product: SmartTargeting. This is a SaaS software helping real estate professionals keeping up with their prospects and leads in a given neighborhood/territory, finding out (thanks to predictive analytics) who's the most likely to list/sell their home, and running cross-channel marketing automation against them: direct mail, online ads, email... The company also does provide Data APIs to Enterprise customers.

I had inherited years and years of technical debt and I knew things had to change radically. The first enabler to this was to make use of the cloud and go with AWS, so we would stop re-inventing the wheel, and build around managed/scalable services.

For the SaaS product, we kept on working with Rails as this was what my team had the most knowledge in. We've however broken up the monolith and decoupled the front-end application from the backend thanks to the use of Rails API so we'd get independently scalable micro-services from now on.

Our various applications could now be deployed using AWS Elastic Beanstalk so we wouldn't waste any more efforts writing time-consuming Capistrano deployment scripts for instance. Combined with Docker so our application would run within its own container, independently from the underlying host configuration.

Storage-wise, we went with Amazon S3 and ditched any pre-existing local or network storage people used to deal with in our legacy systems. On the database side: Amazon RDS / MySQL initially. Ultimately migrated to Amazon RDS for Aurora / MySQL when it got released. Once again, here you need a managed service your cloud provider handles for you.

Future improvements / technology decisions included:

Caching: Amazon ElastiCache / Memcached CDN: Amazon CloudFront Systems Integration: Segment / Zapier Data-warehousing: Amazon Redshift BI: Amazon Quicksight / Superset Search: Elasticsearch / Amazon Elasticsearch Service / Algolia Monitoring: New Relic

As our usage grows, patterns changed, and/or our business needs evolved, my role as Engineering Manager then Director of Engineering was also to ensure my team kept on learning and innovating, while delivering on business value.

One of these innovations was to get ourselves into Serverless : Adopting AWS Lambda was a big step forward. At the time, only available for Node.js (Not Ruby ) but a great way to handle cost efficiency, unpredictable traffic, sudden bursts of traffic... Ultimately you want the whole chain of services involved in a call to be serverless, and that's when we've started leveraging Amazon DynamoDB on these projects so they'd be fully scalable.

16 upvotes·100.6K views

Decision at Dubsmash about Memcached, Algolia, Elasticsearch, SearchAsAService

Avatar of tspecht
‎Co-Founder and CTO at Dubsmash ·

Although we were using Elasticsearch in the beginning to power our in-app search, we moved this part of our processing over to Algolia a couple of months ago; this has proven to be a fantastic choice, letting us build search-related features with more confidence and speed.

Elasticsearch is only used for searching in internal tooling nowadays; hosting and running it reliably has been a task that took up too much time for us in the past and fine-tuning the results to reach a great user-experience was also never an easy task for us. With Algolia we can flexibly change ranking methods on the fly and can instead focus our time on fine-tuning the experience within our app.

Memcached is used in front of most of the API endpoints to cache responses in order to speed up response times and reduce server-costs on our side.

#SearchAsAService

16 upvotes·22.1K views

Decision about SonarQube, Codacy, Docker, Git, Apache Maven, Amazon EC2 Container Service, Microsoft Azure, Amazon Route 53, Elasticsearch, Solr, Amazon RDS, Amazon S3, Heroku, Hibernate, MySQL, Node.js, Java, Bootstrap, jQuery Mobile, jQuery UI, jQuery, JavaScript, React Native, React Router, React

Avatar of ganesa-vijayakumar
Full Stack Coder | Module Lead ·

I'm planning to create a web application and also a mobile application to provide a very good shopping experience to the end customers. Shortly, my application will be aggregate the product details from difference sources and giving a clear picture to the user that when and where to buy that product with best in Quality and cost.

I have planned to develop this in many milestones for adding N number of features and I have picked my first part to complete the core part (aggregate the product details from different sources).

As per my work experience and knowledge, I have chosen the followings stacks to this mission.

UI: I would like to develop this application using React, React Router and React Native since I'm a little bit familiar on this and also most importantly these will help on developing both web and mobile apps. In addition, I'm gonna use the stacks JavaScript, jQuery, jQuery UI, jQuery Mobile, Bootstrap wherever required.

Service: I have planned to use Java as the main business layer language as I have 7+ years of experience on this I believe I can do better work using Java than other languages. In addition, I'm thinking to use the stacks Node.js.

Database and ORM: I'm gonna pick MySQL as DB and Hibernate as ORM since I have a piece of good knowledge and also work experience on this combination.

Search Engine: I need to deal with a large amount of product data and it's in-detailed info to provide enough details to end user at the same time I need to focus on the performance area too. so I have decided to use Solr as a search engine for product search and suggestions. In addition, I'm thinking to replace Solr by Elasticsearch once explored/reviewed enough about Elasticsearch.

Host: As of now, my plan to complete the application with decent features first and deploy it in a free hosting environment like Docker and Heroku and then once it is stable then I have planned to use the AWS products Amazon S3, EC2, Amazon RDS and Amazon Route 53. I'm not sure about Microsoft Azure that what is the specialty in it than Heroku and Amazon EC2 Container Service. Anyhow, I will do explore these once again and pick the best suite one for my requirement once I reached this level.

Build and Repositories: I have decided to choose Apache Maven and Git as these are my favorites and also so popular on respectively build and repositories.

Additional Utilities :) - I would like to choose Codacy for code review as their Startup plan will be very helpful to this application. I'm already experienced with Google CheckStyle and SonarQube even I'm looking something on Codacy.

Happy Coding! Suggestions are welcome! :)

Thanks, Ganesa

15 upvotes·13 comments·88K views

Decision at Zulip about Elasticsearch, MySQL, PostgreSQL

Avatar of tabbott
Founder at Zulip ·

We've been using PostgreSQL since the very early days of Zulip, but we actually didn't use it from the beginning. Zulip started out as a MySQL project back in 2012, because we'd heard it was a good choice for a startup with a wide community. However, we found that even though we were using the Django ORM for most of our database access, we spent a lot of time fighting with MySQL. Issues ranged from bad collation defaults, to bad query plans which required a lot of manual query tweaks.

We ended up getting so frustrated that we tried out PostgresQL, and the results were fantastic. We didn't have to do any real customization (just some tuning settings for how big a server we had), and all of our most important queries were faster out of the box. As a result, we were able to delete a bunch of custom queries escaping the ORM that we'd written to make the MySQL query planner happy (because postgres just did the right thing automatically).

And then after that, we've just gotten a ton of value out of postgres. We use its excellent built-in full-text search, which has helped us avoid needing to bring in a tool like Elasticsearch, and we've really enjoyed features like its partial indexes, which saved us a lot of work adding unnecessary extra tables to get good performance for things like our "unread messages" and "starred messages" indexes.

I can't recommend it highly enough.

12 upvotes·45.3K views

Decision at Mixmax about Redis, Elasticsearch, MongoDB

Avatar of ttacon

Originally, we had a single MongoDB replica set that we stored everything on. As we scaled, we realized two things:

  • A single Mongo replica set wasn’t going to cut it for our many quickly growing collections
  • Analytics and rich searching don’t scale well in Mongo.

To solve for the first item, we now run multiple large scale Mongo deployments with a mix of replica sets and sharded replica sets (depends on the application activity for the given database). In solving for the second item, we now run multiple large Elasticsearch deployments to provide the majority of our rich searching functionality.

We also heavily use Redis across the entire platform for things like distributed locking, caching, and backing part of our job queuing layer. This has led to our most recent (and ongoing!) scaling challenge.

12 upvotes·1.9K views

Decision about Amazon EC2, LXC, CircleCI, Docker, Git, Vault, Apache Maven, Slack, Jenkins, TeamCity, Logstash, Kibana, Elasticsearch, Ansible, VirtualBox, Vagrant

Avatar of Puciek
Devops guy at X20X Development LTD ·

Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

11 upvotes·2 comments·88.1K views

Decision at Stitch Fix about Elasticsearch, Kibana

Avatar of psunnn
Software Engineer at Stitch Fix ·

Elasticsearch's built-in visualization tool, Kibana, is robust and the appropriate tool in many cases. However, it is geared specifically towards log exploration and time-series data, and we felt that its steep learning curve would impede adoption rate among data scientists accustomed to writing SQL. The solution was to create something that would replicate some of Kibana's essential functionality while hiding Elasticsearch's complexity behind SQL-esque labels and terminology ("table" instead of "index", "group by" instead of "sub-aggregation") in the UI.

Elasticsearch's API is really well-suited for aggregating time-series data, indexing arbitrary data without defining a schema, and creating dashboards. For the purpose of a data exploration backend, Elasticsearch fits the bill really well. Users can send an HTTP request with aggregations and sub-aggregations to an index with millions of documents and get a response within seconds, thus allowing them to rapidly iterate through their data.

11 upvotes·16.1K views

Decision at Stitch Fix about Apache Spark, Victory, Amazon S3, Elasticsearch, Redux, React

Avatar of psunnn
Software Engineer at Stitch Fix ·

As a frontend engineer on the Algorithms & Analytics team at Stitch Fix, I work with data scientists to develop applications and visualizations to help our internal business partners make data-driven decisions. I envisioned a platform that would assist data scientists in the data exploration process, allowing them to visually explore and rapidly iterate through their assumptions, then share their insights with others. This would align with our team's philosophy of having engineers "deploy platforms, services, abstractions, and frameworks that allow the data scientists to conceive of, develop, and deploy their ideas with autonomy", and solve the pain of data exploration.

The final product, code-named Dora, is built with React, Redux.js and Victory, backed by Elasticsearch to enable fast and iterative data exploration, and uses Apache Spark to move data from our Amazon S3 data warehouse into the Elasticsearch cluster.

10 upvotes·17.3K views

Decision at Elastic about Kibana, Logstash, Elasticsearch

Avatar of tbragin
Product Lead, Observability at Elastic ·

ELK Stack (Elasticsearch, Logstash, Kibana) is widely known as the de facto way to centralize logs from operational systems. The assumption is that Elasticsearch (a "search engine") is a good place to put text-based logs for the purposes of free-text search. And indeed, simply searching text-based logs for the word "error" or filtering logs based on a set of a well-known tags is extremely powerful, and is often where most users start.

10 upvotes·10.8K views

Decision at Stitch Fix about Amazon EC2 Container Service, Elasticsearch, Amazon S3

Avatar of psunnn
Software Engineer at Stitch Fix ·

To load data from our Amazon S3 data warehouse into the Elasticsearch cluster, I developed a Spark application that uses PySpark to extract data from S3, partition, then batch-send each partition to Elasticsearch to increase parallelism. The Spark job enables fielddata: true for text columns with low cardinality to allow sub-aggregations by text columns and prevents data duplication by adding a unique _id field to each row in the dataframe.

The job can then be run by data scientists in Flotilla, an internal data platform tool for running jobs on Amazon EC2 Container Service, with environment variables specifying which schema and table to load.

7 upvotes·2K views