Feed powered byStream Blue Logo Copy 5
Elasticsearch

Elasticsearch

Utilities / Application Utilities / Search as a Service

Decision at Dubsmash about Memcached, Algolia, Elasticsearch, SearchAsAService

Avatar of tspecht
‎Co-Founder and CTO at Dubsmash ·
MemcachedMemcached
AlgoliaAlgolia
ElasticsearchElasticsearch
#SearchAsAService

Although we were using Elasticsearch in the beginning to power our in-app search, we moved this part of our processing over to Algolia a couple of months ago; this has proven to be a fantastic choice, letting us build search-related features with more confidence and speed.

Elasticsearch is only used for searching in internal tooling nowadays; hosting and running it reliably has been a task that took up too much time for us in the past and fine-tuning the results to reach a great user-experience was also never an easy task for us. With Algolia we can flexibly change ranking methods on the fly and can instead focus our time on fine-tuning the experience within our app.

Memcached is used in front of most of the API endpoints to cache responses in order to speed up response times and reduce server-costs on our side.

#SearchAsAService

16 upvotes·1.9K views

Decision at Stitch Fix about Elasticsearch, Kibana

Avatar of psunnn
Software Engineer at Stitch Fix ·
ElasticsearchElasticsearch
KibanaKibana

Elasticsearch's built-in visualization tool, Kibana, is robust and the appropriate tool in many cases. However, it is geared specifically towards log exploration and time-series data, and we felt that its steep learning curve would impede adoption rate among data scientists accustomed to writing SQL. The solution was to create something that would replicate some of Kibana's essential functionality while hiding Elasticsearch's complexity behind SQL-esque labels and terminology ("table" instead of "index", "group by" instead of "sub-aggregation") in the UI.

Elasticsearch's API is really well-suited for aggregating time-series data, indexing arbitrary data without defining a schema, and creating dashboards. For the purpose of a data exploration backend, Elasticsearch fits the bill really well. Users can send an HTTP request with aggregations and sub-aggregations to an index with millions of documents and get a response within seconds, thus allowing them to rapidly iterate through their data.

10 upvotes·278 views

Decision about Amazon EC2, LXC, CircleCI, Docker, Git, Vault, Apache Maven, Slack, Jenkins, TeamCity, Logstash, Kibana, Elasticsearch, Ansible, VirtualBox, Vagrant

Avatar of Puciek
Devops guy at X20X Development LTD ·
Amazon EC2Amazon EC2
LXCLXC
CircleCICircleCI
DockerDocker
GitGit
VaultVault
Apache MavenApache Maven
SlackSlack
JenkinsJenkins
TeamCityTeamCity
LogstashLogstash
KibanaKibana
ElasticsearchElasticsearch
AnsibleAnsible
VirtualBoxVirtualBox
VagrantVagrant

Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

9 upvotes·2 comments·15.7K views

Decision at Stitch Fix about Apache Spark, Victory, Amazon S3, Elasticsearch, Redux.js, React

Avatar of psunnn
Software Engineer at Stitch Fix ·
Apache SparkApache Spark
VictoryVictory
Amazon S3Amazon S3
ElasticsearchElasticsearch
Redux.jsRedux.js
ReactReact

As a frontend engineer on the Algorithms & Analytics team at Stitch Fix, I work with data scientists to develop applications and visualizations to help our internal business partners make data-driven decisions. I envisioned a platform that would assist data scientists in the data exploration process, allowing them to visually explore and rapidly iterate through their assumptions, then share their insights with others. This would align with our team's philosophy of having engineers "deploy platforms, services, abstractions, and frameworks that allow the data scientists to conceive of, develop, and deploy their ideas with autonomy", and solve the pain of data exploration.

The final product, code-named Dora, is built with React, Redux.js and Victory, backed by Elasticsearch to enable fast and iterative data exploration, and uses Apache Spark to move data from our Amazon S3 data warehouse into the Elasticsearch cluster.

9 upvotes·5K views

Decision at Zulip about Elasticsearch, MySQL, PostgreSQL

Avatar of tabbott
Founder at Zulip ·
ElasticsearchElasticsearch
MySQLMySQL
PostgreSQLPostgreSQL

We've been using PostgreSQL since the very early days of Zulip, but we actually didn't use it from the beginning. Zulip started out as a MySQL project back in 2012, because we'd heard it was a good choice for a startup with a wide community. However, we found that even though we were using the Django ORM for most of our database access, we spent a lot of time fighting with MySQL. Issues ranged from bad collation defaults, to bad query plans which required a lot of manual query tweaks.

We ended up getting so frustrated that we tried out PostgresQL, and the results were fantastic. We didn't have to do any real customization (just some tuning settings for how big a server we had), and all of our most important queries were faster out of the box. As a result, we were able to delete a bunch of custom queries escaping the ORM that we'd written to make the MySQL query planner happy (because postgres just did the right thing automatically).

And then after that, we've just gotten a ton of value out of postgres. We use its excellent built-in full-text search, which has helped us avoid needing to bring in a tool like Elasticsearch, and we've really enjoyed features like its partial indexes, which saved us a lot of work adding unnecessary extra tables to get good performance for things like our "unread messages" and "starred messages" indexes.

I can't recommend it highly enough.

8 upvotes·9.4K views

Decision at Stitch Fix about Amazon EC2 Container Service, Elasticsearch, Amazon S3

Avatar of psunnn
Software Engineer at Stitch Fix ·
Amazon EC2 Container ServiceAmazon EC2 Container Service
ElasticsearchElasticsearch
Amazon S3Amazon S3

To load data from our Amazon S3 data warehouse into the Elasticsearch cluster, I developed a Spark application that uses PySpark to extract data from S3, partition, then batch-send each partition to Elasticsearch to increase parallelism. The Spark job enables fielddata: true for text columns with low cardinality to allow sub-aggregations by text columns and prevents data duplication by adding a unique _id field to each row in the dataframe.

The job can then be run by data scientists in Flotilla, an internal data platform tool for running jobs on Amazon EC2 Container Service, with environment variables specifying which schema and table to load.

7 upvotes·429 views

Decision at Beamery about Kafka, Redis, Elasticsearch, MongoDB, RabbitMQ, Go, Node.js, Kubernetes, Microservices

Avatar of adamrabinovitch
Senior Technical Recruiter & Engineering Evangelist at Beamery ·
KafkaKafka
RedisRedis
ElasticsearchElasticsearch
MongoDBMongoDB
RabbitMQRabbitMQ
GoGo
Node.jsNode.js
KubernetesKubernetes
#Microservices

Beamery runs a #microservices architecture in the backend on top of Google Cloud with Kubernetes There are a 100+ different microservice split between Node.js and Go . Data flows between the microservices over REST and gRPC and passes through Kafka RabbitMQ as a message bus. Beamery stores data in MongoDB with near-realtime replication to Elasticsearch . In addition, Beamery uses Redis for various memory-optimized tasks.

2 upvotes·30.5K views