What is Amazon EC2 Container Service and what are its top alternatives?
Top Alternatives to Amazon EC2 Container Service
- Kubernetes
Kubernetes is an open source orchestration system for Docker containers. It handles scheduling onto nodes in a compute cluster and actively manages workloads to ensure that their state matches the users declared intentions. ...
- Google Kubernetes Engine
Container Engine takes care of provisioning and maintaining the underlying virtual machine cluster, scaling your application, and operational logistics like logging, monitoring, and health management. ...
- Amazon EKS
Amazon Elastic Container Service for Kubernetes (Amazon EKS) is a managed service that makes it easy for you to run Kubernetes on AWS without needing to install and operate your own Kubernetes clusters. ...
- AWS Fargate
AWS Fargate is a technology for Amazon ECS and EKS* that allows you to run containers without having to manage servers or clusters. With AWS Fargate, you no longer have to provision, configure, and scale clusters of virtual machines to run containers. ...
- Azure Kubernetes Service
Deploy and manage containerized applications more easily with a fully managed Kubernetes service. It offers serverless Kubernetes, an integrated continuous integration and continuous delivery (CI/CD) experience, and enterprise-grade security and governance. Unite your development and operations teams on a single platform to rapidly build, deliver, and scale applications with confidence. ...
- Hyper
Hyper.sh is a secure container hosting service. What makes it different from AWS (Amazon Web Services) is that you don't start servers, but start docker images directly from Docker Hub or other registries. ...
- Docker for AWS
An integrated, easy-to-deploy environment for building, assembling, and shipping applications on AWS, Docker for AWS is a native AWS application optimized to take optimal advantage of the underlying AWS IaaS services while giving you a modern Docker platform that you can use to deploy portable apps. ...
- Azure Container Service
Azure Container Service optimizes the configuration of popular open source tools and technologies specifically for Azure. You get an open solution that offers portability for both your containers and your application configuration. You select the size, the number of hosts, and choice of orchestrator tools, and Container Service handles everything else. ...
Amazon EC2 Container Service alternatives & related posts
Kubernetes
- Leading docker container management solution164
- Simple and powerful128
- Open source106
- Backed by google76
- The right abstractions58
- Scale services25
- Replication controller20
- Permission managment11
- Cheap8
- Supports autoscaling8
- Simple8
- No cloud platform lock-in5
- Reliable5
- Self-healing5
- Quick cloud setup4
- Promotes modern/good infrascture practice4
- Scalable4
- Open, powerful, stable4
- Runs on azure3
- Captain of Container Ship3
- Cloud Agnostic3
- Custom and extensibility3
- Backed by Red Hat3
- A self healing environment with rich metadata3
- Gke2
- Everything of CaaS2
- Sfg2
- Expandable2
- Golang2
- Easy setup2
- Poor workflow for development15
- Steep learning curve15
- Orchestrates only infrastructure8
- High resource requirements for on-prem clusters4
- Too heavy for simple systems2
- Additional vendor lock-in (Docker)1
- More moving parts to secure1
- Additional Technology Overhead1
related Kubernetes posts
How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:
Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.
Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:
https://eng.uber.com/distributed-tracing/
(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)
Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark
Our first experience with .NET core was when we developed our OSS feature management platform - Tweek (https://github.com/soluto/tweek). We wanted to create a solution that is able to run anywhere (super important for OSS), has excellent performance characteristics and can fit in a multi-container architecture. We decided to implement our rule engine processor in F# , our main service was implemented in C# and other components were built using JavaScript / TypeScript and Go.
Visual Studio Code worked really well for us as well, it worked well with all our polyglot services and the .Net core integration had great cross-platform developer experience (to be fair, F# was a bit trickier) - actually, each of our team members used a different OS (Ubuntu, macos, windows). Our production deployment ran for a time on Docker Swarm until we've decided to adopt Kubernetes with almost seamless migration process.
After our positive experience of running .Net core workloads in containers and developing Tweek's .Net services on non-windows machines, C# had gained back some of its popularity (originally lost to Node.js), and other teams have been using it for developing microservices, k8s sidecars (like https://github.com/Soluto/airbag), cli tools, serverless functions and other projects...
Google Kubernetes Engine
- Backed by Google17
- Powered by kubernetes17
- Docker12
- Scalable11
- Open source6
- Command line interface is intuitive2
- Decoupled app2
- Provisioning1
- Declarative management1
related Google Kubernetes Engine posts





We recently moved our main applications from Heroku to Kubernetes . The 3 main driving factors behind the switch were scalability (database size limits), security (the inability to set up PostgreSQL instances in private networks), and costs (GCP is cheaper for raw computing resources).
We prefer using managed services, so we are using Google Kubernetes Engine with Google Cloud SQL for PostgreSQL for our PostgreSQL databases and Google Cloud Memorystore for Redis . For our CI/CD pipeline, we are using CircleCI and Google Cloud Build to deploy applications managed with Helm . The new infrastructure is managed with Terraform .
Read the blog post to go more in depth.
We are hardcore Kubernetes users and contributors. We loved the automation it provides. However, as our team grew and added more clusters and microservices, capacity and resources management becomes a massive pain to us. We started suffering from a lot of outages and unexpected behavior as we promote our code from dev to production environments. Luckily we were working on our AI-powered tools to understand different dependencies, predict usage, and calculate the right resources and configurations that should be applied to our infrastructure and microservices. We dogfooded our agent (http://github.com/magalixcorp/magalix-agent) and were able to stabilize as the #autopilot continuously recovered any miscalculations we made or because of unexpected changes in workloads. We are open sourcing our agent in a few days. Check it out and let us know what you think! We run workloads on Microsoft Azure Google Kubernetes Engine and Amazon EC2 and we're all about Go and Python!
- Better control1
- Possibility to log in into the pods1
- Broad package manager using helm1
related Amazon EKS posts
We are looking for a centralised monitoring solution for our application deployed on Amazon EKS. We would like to monitor using metrics from Kubernetes, AWS services (NeptuneDB, AWS Elastic Load Balancing (ELB), Amazon EBS, Amazon S3, etc) and application microservice's custom metrics.
We are expected to use around 80 microservices (not replicas). I think a total of 200-250 microservices will be there in the system with 10-12 slave nodes.
We tried Prometheus but it looks like maintenance is a big issue. We need to manage scaling, maintaining the storage, and dealing with multiple exporters and Grafana. I felt this itself needs few dedicated resources (at least 2-3 people) to manage. Not sure if I am thinking in the correct direction. Please confirm.
You mentioned Datadog and Sysdig charges per host. Does it charge per slave node?
Heroku was a decent choice to start a business, but at some point our platform was too big, too complex & too heterogenic, so Heroku started to be a constraint, not a benefit. First, we've started containerizing our apps with Docker to eliminate "works in my machine" syndrome & uniformize the environment setup. The first orchestration was composed with Docker Compose , but at some point it made sense to move it to Kubernetes. Fortunately, we've made a very good technical decision when starting our work with containers - all the container configuration & provisions HAD (since the beginning) to be done in code (Infrastructure as Code) - we've used Terraform & Ansible for that (correspondingly). This general trend of containerisation was accompanied by another, parallel & equally big project: migrating environments from Heroku to AWS: using Amazon EC2 , Amazon EKS, Amazon S3 & Amazon RDS.
- Expensive1
related AWS Fargate posts





We build a Slack app using the Bolt framework from slack https://api.slack.com/tools/bolt, a Node.js express app. It allows us to easily implement some administration features so we can easily communicate with our backend services, and we don't have to develop any frontend app since Slack block kit will do this for us. It can act as a Chatbot or handle message actions and custom slack flows for our employees.
This app is deployed as a microservice on Amazon EC2 Container Service with AWS Fargate. It uses very little memory (and money) and can communicate easily with our backend services. Slack is connected to this app through a ALB ( AWS Elastic Load Balancing (ELB) )
Azure Kubernetes Service
related Azure Kubernetes Service posts
Visual Studio Azure DevOps Azure Functions Azure Websites #Azure #AzureKeyVault #AzureAD #AzureApps
#Azure Cloud Since Amazon is potentially our competitor then we need a different cloud vendor, also our programmers are microsoft oriented so the choose were obviously #Azure for us.
Azure DevOps Because we need to be able to develop a neww pipeline into Azure environment ina few minutes.
Azure Kubernetes Service We already in #Azure , also need to use K8s , so let's use AKS as it's a manged Kubernetes in the #Azure
related Hyper posts
Docker for AWS
related Docker for AWS posts
- Easy to setup, very agnostic6
- It supports Kubernetes, Mesos DC/OS and Docker Swarm3
- It has a nice command line interface (CLI) tool2