What is Amazon Machine Learning and what are its top alternatives?
Amazon Machine Learning is a cloud-based service that enables developers to build predictive models quickly and easily without the need for extensive machine learning expertise. Its key features include pre-built algorithms for a variety of use cases, easy model training and deployment, and seamless integration with other AWS services. However, it is limited in terms of customization options and may not be suitable for complex, specialized machine learning tasks.
Google Cloud AI Platform: Google Cloud AI Platform offers a comprehensive set of machine learning services, including data labeling, model training, and deployment. Key features include support for custom models, scalability, and integration with other Google Cloud services. Pros include robust infrastructure and support, while cons may include pricing concerns for large-scale deployments.
Microsoft Azure Machine Learning: Microsoft Azure Machine Learning provides a suite of tools for building, training, and deploying machine learning models. Key features include automated machine learning, drag-and-drop model building, and support for various programming languages. Pros include seamless integration with Azure services, while cons may include a steeper learning curve for beginners.
IBM Watson Studio: IBM Watson Studio is a platform for AI and machine learning that offers tools for data preparation, model building, and deployment. Key features include collaboration tools, support for open-source frameworks, and AI explainability. Pros include enterprise-grade security and scalability, while cons may include higher costs for advanced features.
H2O.ai: H2O.ai provides open-source and enterprise machine learning platforms for building and deploying models. Key features include automatic machine learning, interpretability tools, and support for distributed computing. Pros include a strong community and active development, while cons may include limited support for certain use cases.
Databricks: Databricks offers a Unified Analytics Platform that includes tools for data processing, machine learning, and collaborative work. Key features include integration with Apache Spark, built-in libraries for ML, and support for scalable data processing. Pros include ease of use for data scientists and analysts, while cons may include pricing concerns for large-scale deployments.
RapidMiner: RapidMiner is a data science platform that provides tools for data preparation, machine learning, and predictive analytics. Key features include visual workflow design, automated machine learning, and a marketplace for extensions. Pros include a user-friendly interface, while cons may include limitations with large datasets.
SAS Viya: SAS Viya is an AI and analytics platform that offers tools for data management, visualization, and machine learning. Key features include model deployment, model monitoring, and support for advanced analytics. Pros include a comprehensive set of analytics tools, while cons may include a complex setup process.
DataRobot: DataRobot is an automated machine learning platform that helps users build and deploy models quickly. Key features include automated feature engineering, model interpretation, and model selection. Pros include fast model deployment, while cons may include limited customization options.
BigML: BigML is a machine learning platform that offers tools for building and deploying models. Key features include support for multiple algorithms, model visualization, and batch prediction. Pros include a user-friendly interface, while cons may include a lack of advanced features for experienced users.
KNIME: KNIME is an open-source data analytics platform that provides tools for data blending, modeling, and deployment. Key features include a visual workflow editor, support for various data formats, and integration with popular ML libraries. Pros include flexibility and extensibility, while cons may include a steeper learning curve for beginners.
Top Alternatives to Amazon Machine Learning
- TensorFlow
TensorFlow is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API. ...
- Apache Spark
Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning. ...
- Amazon SageMaker
A fully-managed service that enables developers and data scientists to quickly and easily build, train, and deploy machine learning models at any scale. ...
- RapidMiner
It is a software platform for data science teams that unites data prep, machine learning, and predictive model deployment. ...
- Azure Machine Learning
Azure Machine Learning is a fully-managed cloud service that enables data scientists and developers to efficiently embed predictive analytics into their applications, helping organizations use massive data sets and bring all the benefits of the cloud to machine learning. ...
- Postman
It is the only complete API development environment, used by nearly five million developers and more than 100,000 companies worldwide. ...
- Postman
It is the only complete API development environment, used by nearly five million developers and more than 100,000 companies worldwide. ...
- Stack Overflow
Stack Overflow is a question and answer site for professional and enthusiast programmers. It's built and run by you as part of the Stack Exchange network of Q&A sites. With your help, we're working together to build a library of detailed answers to every question about programming. ...
Amazon Machine Learning alternatives & related posts
- High Performance32
- Connect Research and Production19
- Deep Flexibility16
- Auto-Differentiation12
- True Portability11
- Easy to use6
- High level abstraction5
- Powerful5
- Hard9
- Hard to debug6
- Documentation not very helpful2
related TensorFlow posts
Google Analytics is a great tool to analyze your traffic. To debug our software and ask questions, we love to use Postman and Stack Overflow. Google Drive helps our team to share documents. We're able to build our great products through the APIs by Google Maps, CloudFlare, Stripe, PayPal, Twilio, Let's Encrypt, and TensorFlow.
Why we built an open source, distributed training framework for TensorFlow , Keras , and PyTorch:
At Uber, we apply deep learning across our business; from self-driving research to trip forecasting and fraud prevention, deep learning enables our engineers and data scientists to create better experiences for our users.
TensorFlow has become a preferred deep learning library at Uber for a variety of reasons. To start, the framework is one of the most widely used open source frameworks for deep learning, which makes it easy to onboard new users. It also combines high performance with an ability to tinker with low-level model details—for instance, we can use both high-level APIs, such as Keras, and implement our own custom operators using NVIDIA’s CUDA toolkit.
Uber has introduced Michelangelo (https://eng.uber.com/michelangelo/), an internal ML-as-a-service platform that democratizes machine learning and makes it easy to build and deploy these systems at scale. In this article, we pull back the curtain on Horovod, an open source component of Michelangelo’s deep learning toolkit which makes it easier to start—and speed up—distributed deep learning projects with TensorFlow:
(Direct GitHub repo: https://github.com/uber/horovod)
- Open-source61
- Fast and Flexible48
- One platform for every big data problem8
- Great for distributed SQL like applications8
- Easy to install and to use6
- Works well for most Datascience usecases3
- Interactive Query2
- Machine learning libratimery, Streaming in real2
- In memory Computation2
- Speed4
related Apache Spark posts
The algorithms and data infrastructure at Stitch Fix is housed in #AWS. Data acquisition is split between events flowing through Kafka, and periodic snapshots of PostgreSQL DBs. We store data in an Amazon S3 based data warehouse. Apache Spark on Yarn is our tool of choice for data movement and #ETL. Because our storage layer (s3) is decoupled from our processing layer, we are able to scale our compute environment very elastically. We have several semi-permanent, autoscaling Yarn clusters running to serve our data processing needs. While the bulk of our compute infrastructure is dedicated to algorithmic processing, we also implemented Presto for adhoc queries and dashboards.
Beyond data movement and ETL, most #ML centric jobs (e.g. model training and execution) run in a similarly elastic environment as containers running Python and R code on Amazon EC2 Container Service clusters. The execution of batch jobs on top of ECS is managed by Flotilla, a service we built in house and open sourced (see https://github.com/stitchfix/flotilla-os).
At Stitch Fix, algorithmic integrations are pervasive across the business. We have dozens of data products actively integrated systems. That requires serving layer that is robust, agile, flexible, and allows for self-service. Models produced on Flotilla are packaged for deployment in production using Khan, another framework we've developed internally. Khan provides our data scientists the ability to quickly productionize those models they've developed with open source frameworks in Python 3 (e.g. PyTorch, sklearn), by automatically packaging them as Docker containers and deploying to Amazon ECS. This provides our data scientist a one-click method of getting from their algorithms to production. We then integrate those deployments into a service mesh, which allows us to A/B test various implementations in our product.
For more info:
- Our Algorithms Tour: https://algorithms-tour.stitchfix.com/
- Our blog: https://multithreaded.stitchfix.com/blog/
- Careers: https://multithreaded.stitchfix.com/careers/
#DataScience #DataStack #Data
As a frontend engineer on the Algorithms & Analytics team at Stitch Fix, I work with data scientists to develop applications and visualizations to help our internal business partners make data-driven decisions. I envisioned a platform that would assist data scientists in the data exploration process, allowing them to visually explore and rapidly iterate through their assumptions, then share their insights with others. This would align with our team's philosophy of having engineers "deploy platforms, services, abstractions, and frameworks that allow the data scientists to conceive of, develop, and deploy their ideas with autonomy", and solve the pain of data exploration.
The final product, code-named Dora, is built with React, Redux.js and Victory, backed by Elasticsearch to enable fast and iterative data exploration, and uses Apache Spark to move data from our Amazon S3 data warehouse into the Elasticsearch cluster.
related Amazon SageMaker posts
Amazon SageMaker constricts the use of their own mxnet package and does not offer a strong Kubernetes backbone. At the same time, Kubeflow is still quite buggy and cumbersome to use. Which tool is a better pick for MLOps pipelines (both from the perspective of scalability and depth)?
Which #IaaS / #PaaS to chose? Not all #Cloud providers are created equal. As you start to use one or the other, you'll build around very specific services that don't have their equivalent elsewhere.
Back in 2014/2015, this decision I made for SmartZip was a no-brainer and #AWS won. AWS has been a leader, and over the years demonstrated their capacity to innovate, and reducing toil. Like no other.
Year after year, this kept on being confirmed, as they rolled out new (managed) services, got into Serverless with AWS Lambda / FaaS And allowed domains such as #AI / #MachineLearning to be put into the hands of every developers thanks to Amazon Machine Learning or Amazon SageMaker for instance.
Should you compare with #GCP for instance, it's not quite there yet. Building around these managed services, #AWS allowed me to get my developers on a whole new level. Where they know what's under the hood. Where they know they have these services available and can build around them. Where they care and are responsible for operations and security and deployment of what they've worked on.
RapidMiner
related RapidMiner posts
related Azure Machine Learning posts
- Easy to use490
- Great tool369
- Makes developing rest api's easy peasy276
- Easy setup, looks good156
- The best api workflow out there144
- It's the best53
- History feature53
- Adds real value to my workflow44
- Great interface that magically predicts your needs43
- The best in class app35
- Can save and share script12
- Fully featured without looking cluttered10
- Collections8
- Option to run scrips8
- Global/Environment Variables8
- Shareable Collections7
- Dead simple and useful. Excellent7
- Dark theme easy on the eyes7
- Awesome customer support6
- Great integration with newman6
- Documentation5
- Simple5
- The test script is useful5
- Saves responses4
- This has simplified my testing significantly4
- Makes testing API's as easy as 1,2,34
- Easy as pie4
- API-network3
- I'd recommend it to everyone who works with apis3
- Mocking API calls with predefined response3
- Now supports GraphQL2
- Postman Runner CI Integration2
- Easy to setup, test and provides test storage2
- Continuous integration using newman2
- Pre-request Script and Test attributes are invaluable2
- Runner2
- Graph2
- <a href="http://fixbit.com/">useful tool</a>1
- Stores credentials in HTTP10
- Bloated features and UI9
- Cumbersome to switch authentication tokens8
- Poor GraphQL support7
- Expensive5
- Not free after 5 users3
- Can't prompt for per-request variables3
- Import swagger1
- Support websocket1
- Import curl1
related Postman posts
We just launched the Segment Config API (try it out for yourself here) — a set of public REST APIs that enable you to manage your Segment configuration. A public API is only as good as its #documentation. For the API reference doc we are using Postman.
Postman is an “API development environment”. You download the desktop app, and build API requests by URL and payload. Over time you can build up a set of requests and organize them into a “Postman Collection”. You can generalize a collection with “collection variables”. This allows you to parameterize things like username
, password
and workspace_name
so a user can fill their own values in before making an API call. This makes it possible to use Postman for one-off API tasks instead of writing code.
Then you can add Markdown content to the entire collection, a folder of related methods, and/or every API method to explain how the APIs work. You can publish a collection and easily share it with a URL.
This turns Postman from a personal #API utility to full-blown public interactive API documentation. The result is a great looking web page with all the API calls, docs and sample requests and responses in one place. Check out the results here.
Postman’s powers don’t end here. You can automate Postman with “test scripts” and have it periodically run a collection scripts as “monitors”. We now have #QA around all the APIs in public docs to make sure they are always correct
Along the way we tried other techniques for documenting APIs like ReadMe.io or Swagger UI. These required a lot of effort to customize.
Writing and maintaining a Postman collection takes some work, but the resulting documentation site, interactivity and API testing tools are well worth it.
Our whole Node.js backend stack consists of the following tools:
- Lerna as a tool for multi package and multi repository management
- npm as package manager
- NestJS as Node.js framework
- TypeScript as programming language
- ExpressJS as web server
- Swagger UI for visualizing and interacting with the API’s resources
- Postman as a tool for API development
- TypeORM as object relational mapping layer
- JSON Web Token for access token management
The main reason we have chosen Node.js over PHP is related to the following artifacts:
- Made for the web and widely in use: Node.js is a software platform for developing server-side network services. Well-known projects that rely on Node.js include the blogging software Ghost, the project management tool Trello and the operating system WebOS. Node.js requires the JavaScript runtime environment V8, which was specially developed by Google for the popular Chrome browser. This guarantees a very resource-saving architecture, which qualifies Node.js especially for the operation of a web server. Ryan Dahl, the developer of Node.js, released the first stable version on May 27, 2009. He developed Node.js out of dissatisfaction with the possibilities that JavaScript offered at the time. The basic functionality of Node.js has been mapped with JavaScript since the first version, which can be expanded with a large number of different modules. The current package managers (npm or Yarn) for Node.js know more than 1,000,000 of these modules.
- Fast server-side solutions: Node.js adopts the JavaScript "event-loop" to create non-blocking I/O applications that conveniently serve simultaneous events. With the standard available asynchronous processing within JavaScript/TypeScript, highly scalable, server-side solutions can be realized. The efficient use of the CPU and the RAM is maximized and more simultaneous requests can be processed than with conventional multi-thread servers.
- A language along the entire stack: Widely used frameworks such as React or AngularJS or Vue.js, which we prefer, are written in JavaScript/TypeScript. If Node.js is now used on the server side, you can use all the advantages of a uniform script language throughout the entire application development. The same language in the back- and frontend simplifies the maintenance of the application and also the coordination within the development team.
- Flexibility: Node.js sets very few strict dependencies, rules and guidelines and thus grants a high degree of flexibility in application development. There are no strict conventions so that the appropriate architecture, design structures, modules and features can be freely selected for the development.
- Easy to use490
- Great tool369
- Makes developing rest api's easy peasy276
- Easy setup, looks good156
- The best api workflow out there144
- It's the best53
- History feature53
- Adds real value to my workflow44
- Great interface that magically predicts your needs43
- The best in class app35
- Can save and share script12
- Fully featured without looking cluttered10
- Collections8
- Option to run scrips8
- Global/Environment Variables8
- Shareable Collections7
- Dead simple and useful. Excellent7
- Dark theme easy on the eyes7
- Awesome customer support6
- Great integration with newman6
- Documentation5
- Simple5
- The test script is useful5
- Saves responses4
- This has simplified my testing significantly4
- Makes testing API's as easy as 1,2,34
- Easy as pie4
- API-network3
- I'd recommend it to everyone who works with apis3
- Mocking API calls with predefined response3
- Now supports GraphQL2
- Postman Runner CI Integration2
- Easy to setup, test and provides test storage2
- Continuous integration using newman2
- Pre-request Script and Test attributes are invaluable2
- Runner2
- Graph2
- <a href="http://fixbit.com/">useful tool</a>1
- Stores credentials in HTTP10
- Bloated features and UI9
- Cumbersome to switch authentication tokens8
- Poor GraphQL support7
- Expensive5
- Not free after 5 users3
- Can't prompt for per-request variables3
- Import swagger1
- Support websocket1
- Import curl1
related Postman posts
We just launched the Segment Config API (try it out for yourself here) — a set of public REST APIs that enable you to manage your Segment configuration. A public API is only as good as its #documentation. For the API reference doc we are using Postman.
Postman is an “API development environment”. You download the desktop app, and build API requests by URL and payload. Over time you can build up a set of requests and organize them into a “Postman Collection”. You can generalize a collection with “collection variables”. This allows you to parameterize things like username
, password
and workspace_name
so a user can fill their own values in before making an API call. This makes it possible to use Postman for one-off API tasks instead of writing code.
Then you can add Markdown content to the entire collection, a folder of related methods, and/or every API method to explain how the APIs work. You can publish a collection and easily share it with a URL.
This turns Postman from a personal #API utility to full-blown public interactive API documentation. The result is a great looking web page with all the API calls, docs and sample requests and responses in one place. Check out the results here.
Postman’s powers don’t end here. You can automate Postman with “test scripts” and have it periodically run a collection scripts as “monitors”. We now have #QA around all the APIs in public docs to make sure they are always correct
Along the way we tried other techniques for documenting APIs like ReadMe.io or Swagger UI. These required a lot of effort to customize.
Writing and maintaining a Postman collection takes some work, but the resulting documentation site, interactivity and API testing tools are well worth it.
Our whole Node.js backend stack consists of the following tools:
- Lerna as a tool for multi package and multi repository management
- npm as package manager
- NestJS as Node.js framework
- TypeScript as programming language
- ExpressJS as web server
- Swagger UI for visualizing and interacting with the API’s resources
- Postman as a tool for API development
- TypeORM as object relational mapping layer
- JSON Web Token for access token management
The main reason we have chosen Node.js over PHP is related to the following artifacts:
- Made for the web and widely in use: Node.js is a software platform for developing server-side network services. Well-known projects that rely on Node.js include the blogging software Ghost, the project management tool Trello and the operating system WebOS. Node.js requires the JavaScript runtime environment V8, which was specially developed by Google for the popular Chrome browser. This guarantees a very resource-saving architecture, which qualifies Node.js especially for the operation of a web server. Ryan Dahl, the developer of Node.js, released the first stable version on May 27, 2009. He developed Node.js out of dissatisfaction with the possibilities that JavaScript offered at the time. The basic functionality of Node.js has been mapped with JavaScript since the first version, which can be expanded with a large number of different modules. The current package managers (npm or Yarn) for Node.js know more than 1,000,000 of these modules.
- Fast server-side solutions: Node.js adopts the JavaScript "event-loop" to create non-blocking I/O applications that conveniently serve simultaneous events. With the standard available asynchronous processing within JavaScript/TypeScript, highly scalable, server-side solutions can be realized. The efficient use of the CPU and the RAM is maximized and more simultaneous requests can be processed than with conventional multi-thread servers.
- A language along the entire stack: Widely used frameworks such as React or AngularJS or Vue.js, which we prefer, are written in JavaScript/TypeScript. If Node.js is now used on the server side, you can use all the advantages of a uniform script language throughout the entire application development. The same language in the back- and frontend simplifies the maintenance of the application and also the coordination within the development team.
- Flexibility: Node.js sets very few strict dependencies, rules and guidelines and thus grants a high degree of flexibility in application development. There are no strict conventions so that the appropriate architecture, design structures, modules and features can be freely selected for the development.
- Scary smart community257
- Knows all206
- Voting system142
- Good questions134
- Good SEO83
- Addictive22
- Tight focus14
- Share and gain knowledge10
- Useful7
- Fast loading3
- Gamification2
- Knows everyone1
- Experts share experience and answer questions1
- Stack overflow to developers As google to net surfers1
- Questions answered quickly1
- No annoying ads1
- No spam1
- Fast community response1
- Good moderators1
- Quick answers from users1
- Good answers1
- User reputation ranking1
- Efficient answers1
- Leading developer community1
- Not welcoming to newbies3
- Unfair downvoting3
- Unfriendly moderators3
- No opinion based questions3
- Mean users3
- Limited to types of questions it can accept2
related Stack Overflow posts
Google Analytics is a great tool to analyze your traffic. To debug our software and ask questions, we love to use Postman and Stack Overflow. Google Drive helps our team to share documents. We're able to build our great products through the APIs by Google Maps, CloudFlare, Stripe, PayPal, Twilio, Let's Encrypt, and TensorFlow.