Alternatives to Cassandra logo

Alternatives to Cassandra

HBase, Hadoop, Redis, Couchbase, and MySQL are the most popular alternatives and competitors to Cassandra.
2.1K
1.6K
+ 1
443

What is Cassandra and what are its top alternatives?

Partitioning means that Cassandra can distribute your data across multiple machines in an application-transparent matter. Cassandra will automatically repartition as machines are added and removed from the cluster. Row store means that like relational databases, Cassandra organizes data by rows and columns. The Cassandra Query Language (CQL) is a close relative of SQL.
Cassandra is a tool in the Databases category of a tech stack.
Cassandra is an open source tool with 5.6K GitHub stars and 2.5K GitHub forks. Here’s a link to Cassandra's open source repository on GitHub

Cassandra alternatives & related posts

HBase logo

HBase

197
162
12
197
162
+ 1
12
The Hadoop database, a distributed, scalable, big data store
HBase logo
HBase
VS
Cassandra logo
Cassandra
Hadoop logo

Hadoop

1.1K
915
48
1.1K
915
+ 1
48
Open-source software for reliable, scalable, distributed computing
Hadoop logo
Hadoop
VS
Cassandra logo
Cassandra

related Hadoop posts

StackShare Editors
StackShare Editors
| 4 upvotes · 103.6K views
atUber TechnologiesUber Technologies
Kafka
Kafka
Kibana
Kibana
Elasticsearch
Elasticsearch
Logstash
Logstash
Hadoop
Hadoop

With interactions across each other and mobile devices, logging is important as it is information for internal cases like debugging and business cases like dynamic pricing.

With multiple Kafka clusters, data is archived into Hadoop before expiration. Data is ingested in realtime and indexed into an ELK stack. The ELK stack comprises of Elasticsearch, Logstash, and Kibana for searching and visualization.

See more
StackShare Editors
StackShare Editors
Prometheus
Prometheus
Chef
Chef
Consul
Consul
Memcached
Memcached
Hack
Hack
Swift
Swift
Hadoop
Hadoop
Terraform
Terraform
Airflow
Airflow
Apache Spark
Apache Spark
Kubernetes
Kubernetes
gRPC
gRPC
HHVM (HipHop Virtual Machine)
HHVM (HipHop Virtual Machine)
Presto
Presto
Kotlin
Kotlin
Apache Thrift
Apache Thrift

Since the beginning, Cal Henderson has been the CTO of Slack. Earlier this year, he commented on a Quora question summarizing their current stack.

Apps
  • Web: a mix of JavaScript/ES6 and React.
  • Desktop: And Electron to ship it as a desktop application.
  • Android: a mix of Java and Kotlin.
  • iOS: written in a mix of Objective C and Swift.
Backend
  • The core application and the API written in PHP/Hack that runs on HHVM.
  • The data is stored in MySQL using Vitess.
  • Caching is done using Memcached and MCRouter.
  • The search service takes help from SolrCloud, with various Java services.
  • The messaging system uses WebSockets with many services in Java and Go.
  • Load balancing is done using HAproxy with Consul for configuration.
  • Most services talk to each other over gRPC,
  • Some Thrift and JSON-over-HTTP
  • Voice and video calling service was built in Elixir.
Data warehouse
  • Built using open source tools including Presto, Spark, Airflow, Hadoop and Kafka.
Etc
See more

related Redis posts

Robert Zuber
Robert Zuber
CTO at CircleCI · | 22 upvotes · 224K views
atCircleCICircleCI
MongoDB
MongoDB
PostgreSQL
PostgreSQL
Redis
Redis
GitHub
GitHub
Amazon S3
Amazon S3

We use MongoDB as our primary #datastore. Mongo's approach to replica sets enables some fantastic patterns for operations like maintenance, backups, and #ETL.

As we pull #microservices from our #monolith, we are taking the opportunity to build them with their own datastores using PostgreSQL. We also use Redis to cache data we’d never store permanently, and to rate-limit our requests to partners’ APIs (like GitHub).

When we’re dealing with large blobs of immutable data (logs, artifacts, and test results), we store them in Amazon S3. We handle any side-effects of S3’s eventual consistency model within our own code. This ensures that we deal with user requests correctly while writes are in process.

See more
Thierry Schellenbach
Thierry Schellenbach
CEO at Stream · | 17 upvotes · 87.1K views
atStreamStream
Redis
Redis
Cassandra
Cassandra
RocksDB
RocksDB
#InMemoryDatabases
#DataStores
#Databases

1.0 of Stream leveraged Cassandra for storing the feed. Cassandra is a common choice for building feeds. Instagram, for instance started, out with Redis but eventually switched to Cassandra to handle their rapid usage growth. Cassandra can handle write heavy workloads very efficiently.

Cassandra is a great tool that allows you to scale write capacity simply by adding more nodes, though it is also very complex. This complexity made it hard to diagnose performance fluctuations. Even though we had years of experience with running Cassandra, it still felt like a bit of a black box. When building Stream 2.0 we decided to go for a different approach and build Keevo. Keevo is our in-house key-value store built upon RocksDB, gRPC and Raft.

RocksDB is a highly performant embeddable database library developed and maintained by Facebook’s data engineering team. RocksDB started as a fork of Google’s LevelDB that introduced several performance improvements for SSD. Nowadays RocksDB is a project on its own and is under active development. It is written in C++ and it’s fast. Have a look at how this benchmark handles 7 million QPS. In terms of technology it’s much more simple than Cassandra.

This translates into reduced maintenance overhead, improved performance and, most importantly, more consistent performance. It’s interesting to note that LinkedIn also uses RocksDB for their feed.

#InMemoryDatabases #DataStores #Databases

See more
MySQL logo

MySQL

23.8K
18.4K
3.7K
23.8K
18.4K
+ 1
3.7K
The world's most popular open source database
MySQL logo
MySQL
VS
Cassandra logo
Cassandra

related MySQL posts

Tim Abbott
Tim Abbott
Founder at Zulip · | 20 upvotes · 114.1K views
atZulipZulip
PostgreSQL
PostgreSQL
MySQL
MySQL
Elasticsearch
Elasticsearch

We've been using PostgreSQL since the very early days of Zulip, but we actually didn't use it from the beginning. Zulip started out as a MySQL project back in 2012, because we'd heard it was a good choice for a startup with a wide community. However, we found that even though we were using the Django ORM for most of our database access, we spent a lot of time fighting with MySQL. Issues ranged from bad collation defaults, to bad query plans which required a lot of manual query tweaks.

We ended up getting so frustrated that we tried out PostgresQL, and the results were fantastic. We didn't have to do any real customization (just some tuning settings for how big a server we had), and all of our most important queries were faster out of the box. As a result, we were able to delete a bunch of custom queries escaping the ORM that we'd written to make the MySQL query planner happy (because postgres just did the right thing automatically).

And then after that, we've just gotten a ton of value out of postgres. We use its excellent built-in full-text search, which has helped us avoid needing to bring in a tool like Elasticsearch, and we've really enjoyed features like its partial indexes, which saved us a lot of work adding unnecessary extra tables to get good performance for things like our "unread messages" and "starred messages" indexes.

I can't recommend it highly enough.

See more
Julien DeFrance
Julien DeFrance
Principal Software Engineer at Tophatter · | 16 upvotes · 498.6K views
atSmartZipSmartZip
Rails
Rails
Rails API
Rails API
AWS Elastic Beanstalk
AWS Elastic Beanstalk
Capistrano
Capistrano
Docker
Docker
Amazon S3
Amazon S3
Amazon RDS
Amazon RDS
MySQL
MySQL
Amazon RDS for Aurora
Amazon RDS for Aurora
Amazon ElastiCache
Amazon ElastiCache
Memcached
Memcached
Amazon CloudFront
Amazon CloudFront
Segment
Segment
Zapier
Zapier
Amazon Redshift
Amazon Redshift
Amazon Quicksight
Amazon Quicksight
Superset
Superset
Elasticsearch
Elasticsearch
Amazon Elasticsearch Service
Amazon Elasticsearch Service
New Relic
New Relic
AWS Lambda
AWS Lambda
Node.js
Node.js
Ruby
Ruby
Amazon DynamoDB
Amazon DynamoDB
Algolia
Algolia

Back in 2014, I was given an opportunity to re-architect SmartZip Analytics platform, and flagship product: SmartTargeting. This is a SaaS software helping real estate professionals keeping up with their prospects and leads in a given neighborhood/territory, finding out (thanks to predictive analytics) who's the most likely to list/sell their home, and running cross-channel marketing automation against them: direct mail, online ads, email... The company also does provide Data APIs to Enterprise customers.

I had inherited years and years of technical debt and I knew things had to change radically. The first enabler to this was to make use of the cloud and go with AWS, so we would stop re-inventing the wheel, and build around managed/scalable services.

For the SaaS product, we kept on working with Rails as this was what my team had the most knowledge in. We've however broken up the monolith and decoupled the front-end application from the backend thanks to the use of Rails API so we'd get independently scalable micro-services from now on.

Our various applications could now be deployed using AWS Elastic Beanstalk so we wouldn't waste any more efforts writing time-consuming Capistrano deployment scripts for instance. Combined with Docker so our application would run within its own container, independently from the underlying host configuration.

Storage-wise, we went with Amazon S3 and ditched any pre-existing local or network storage people used to deal with in our legacy systems. On the database side: Amazon RDS / MySQL initially. Ultimately migrated to Amazon RDS for Aurora / MySQL when it got released. Once again, here you need a managed service your cloud provider handles for you.

Future improvements / technology decisions included:

Caching: Amazon ElastiCache / Memcached CDN: Amazon CloudFront Systems Integration: Segment / Zapier Data-warehousing: Amazon Redshift BI: Amazon Quicksight / Superset Search: Elasticsearch / Amazon Elasticsearch Service / Algolia Monitoring: New Relic

As our usage grows, patterns changed, and/or our business needs evolved, my role as Engineering Manager then Director of Engineering was also to ensure my team kept on learning and innovating, while delivering on business value.

One of these innovations was to get ourselves into Serverless : Adopting AWS Lambda was a big step forward. At the time, only available for Node.js (Not Ruby ) but a great way to handle cost efficiency, unpredictable traffic, sudden bursts of traffic... Ultimately you want the whole chain of services involved in a call to be serverless, and that's when we've started leveraging Amazon DynamoDB on these projects so they'd be fully scalable.

See more
PostgreSQL logo

PostgreSQL

17.4K
13.2K
3.4K
17.4K
13.2K
+ 1
3.4K
A powerful, open source object-relational database system
PostgreSQL logo
PostgreSQL
VS
Cassandra logo
Cassandra

related PostgreSQL posts

Jeyabalaji Subramanian
Jeyabalaji Subramanian
CTO at FundsCorner · | 24 upvotes · 355.3K views
atFundsCornerFundsCorner
MongoDB
MongoDB
PostgreSQL
PostgreSQL
MongoDB Stitch
MongoDB Stitch
Node.js
Node.js
Amazon SQS
Amazon SQS
Python
Python
SQLAlchemy
SQLAlchemy
AWS Lambda
AWS Lambda
Zappa
Zappa

Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.

We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient

Based on the above criteria, we selected the following tools to perform the end to end data replication:

We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.

We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.

In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.

Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.

In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!

See more
Robert Zuber
Robert Zuber
CTO at CircleCI · | 22 upvotes · 224K views
atCircleCICircleCI
MongoDB
MongoDB
PostgreSQL
PostgreSQL
Redis
Redis
GitHub
GitHub
Amazon S3
Amazon S3

We use MongoDB as our primary #datastore. Mongo's approach to replica sets enables some fantastic patterns for operations like maintenance, backups, and #ETL.

As we pull #microservices from our #monolith, we are taking the opportunity to build them with their own datastores using PostgreSQL. We also use Redis to cache data we’d never store permanently, and to rate-limit our requests to partners’ APIs (like GitHub).

When we’re dealing with large blobs of immutable data (logs, artifacts, and test results), we store them in Amazon S3. We handle any side-effects of S3’s eventual consistency model within our own code. This ensures that we deal with user requests correctly while writes are in process.

See more
Oracle logo

Oracle

846
616
81
846
616
+ 1
81
An RDBMS that implements object-oriented features such as user-defined types, inheritance, and polymorphism
Oracle logo
Oracle
VS
Cassandra logo
Cassandra