What is Cassandra and what are its top alternatives?
Top Alternatives to Cassandra
- HBase
Apache HBase is an open-source, distributed, versioned, column-oriented store modeled after Google' Bigtable: A Distributed Storage System for Structured Data by Chang et al. Just as Bigtable leverages the distributed data storage provided by the Google File System, HBase provides Bigtable-like capabilities on top of Apache Hadoop. ...
- Google Cloud Bigtable
Google Cloud Bigtable offers you a fast, fully managed, massively scalable NoSQL database service that's ideal for web, mobile, and Internet of Things applications requiring terabytes to petabytes of data. Unlike comparable market offerings, Cloud Bigtable doesn't require you to sacrifice speed, scale, or cost efficiency when your applications grow. Cloud Bigtable has been battle-tested at Google for more than 10 years—it's the database driving major applications such as Google Analytics and Gmail. ...
- Hadoop
The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using simple programming models. It is designed to scale up from single servers to thousands of machines, each offering local computation and storage. ...
- Redis
Redis is an open source (BSD licensed), in-memory data structure store, used as a database, cache, and message broker. Redis provides data structures such as strings, hashes, lists, sets, sorted sets with range queries, bitmaps, hyperloglogs, geospatial indexes, and streams. ...
- Couchbase
Developed as an alternative to traditionally inflexible SQL databases, the Couchbase NoSQL database is built on an open source foundation and architected to help developers solve real-world problems and meet high scalability demands. ...
- MySQL
The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software. ...
- PostgreSQL
PostgreSQL is an advanced object-relational database management system that supports an extended subset of the SQL standard, including transactions, foreign keys, subqueries, triggers, user-defined types and functions. ...
- Oracle
Oracle Database is an RDBMS. An RDBMS that implements object-oriented features such as user-defined types, inheritance, and polymorphism is called an object-relational database management system (ORDBMS). Oracle Database has extended the relational model to an object-relational model, making it possible to store complex business models in a relational database. ...
Cassandra alternatives & related posts
- Performance9
- OLTP5
- Fast Point Queries1
related HBase posts
I am researching different querying solutions to handle ~1 trillion records of data (in the realm of a petabyte). The data is mostly textual. I have identified a few options: Milvus, HBase, RocksDB, and Elasticsearch. I was wondering if there is a good way to compare the performance of these options (or if anyone has already done something like this). I want to be able to compare the speed of ingesting and querying textual data from these tools. Does anyone have information on this or know where I can find some? Thanks in advance!
Hi, I'm building a machine learning pipelines to store image bytes and image vectors in the backend.
So, when users query for the random access image data (key), we return the image bytes and perform machine learning model operations on it.
I'm currently considering going with Amazon S3 (in the future, maybe add Redis caching layer) as the backend system to store the information (s3 buckets with sharded prefixes).
As the latency of S3 is 100-200ms (get/put) and it has a high throughput of 3500 puts/sec and 5500 gets/sec for a given bucker/prefix. In the future I need to reduce the latency, I can add Redis cache.
Also, s3 costs are way fewer than HBase (on Amazon EC2 instances with 3x replication factor)
I have not personally used HBase before, so can someone help me if I'm making the right choice here? I'm not aware of Hbase latencies and I have learned that the MOB feature on Hbase has to be turned on if we have store image bytes on of the column families as the avg image bytes are 240Kb.
Google Cloud Bigtable
- High performance11
- Fully managed9
- High scalability5
related Google Cloud Bigtable posts
Context: I wanted to create an end to end IoT data pipeline simulation in Google Cloud IoT Core and other GCP services. I never touched Terraform meaningfully until working on this project, and it's one of the best explorations in my development career. The documentation and syntax is incredibly human-readable and friendly. I'm used to building infrastructure through the google apis via Python , but I'm so glad past Sung did not make that decision. I was tempted to use Google Cloud Deployment Manager, but the templates were a bit convoluted by first impression. I'm glad past Sung did not make this decision either.
Solution: Leveraging Google Cloud Build Google Cloud Run Google Cloud Bigtable Google BigQuery Google Cloud Storage Google Compute Engine along with some other fun tools, I can deploy over 40 GCP resources using Terraform!
Check Out My Architecture: CLICK ME
Check out the GitHub repo attached
I'm trying to build a way to read financial data really, really fast, for low cost. We are write/update-light (in this arena) and read-heavy. Google BigQuery being serverless can keep costs beyond low, but query speeds are always a few seconds because, I think, of the lack of indexing and potential to take advantage of the structure of the common queries. I have tried various partitions on BigQuery to speed things up too with some success but nothing extraordinary. I have never used Google Cloud Bigtable but get how it works conceptually. I believe it would make date-range based queries markedly faster. Question is, are there ways to take advantage of date-ranges in BigQuery, or does it makes sense to just shift to BigTable for mega-fast reads? I'd love to get sub-50ms.
- Great ecosystem39
- One stack to rule them all11
- Great load balancer4
- Amazon aws1
- Java syntax1
related Hadoop posts
The early data ingestion pipeline at Pinterest used Kafka as the central message transporter, with the app servers writing messages directly to Kafka, which then uploaded log files to S3.
For databases, a custom Hadoop streamer pulled database data and wrote it to S3.
Challenges cited for this infrastructure included high operational overhead, as well as potential data loss occurring when Kafka broker outages led to an overflow of in-memory message buffering.
Why we built Marmaray, an open source generic data ingestion and dispersal framework and library for Apache Hadoop :
Built and designed by our Hadoop Platform team, Marmaray is a plug-in-based framework built on top of the Hadoop ecosystem. Users can add support to ingest data from any source and disperse to any sink leveraging the use of Apache Spark . The name, Marmaray, comes from a tunnel in Turkey connecting Europe and Asia. Similarly, we envisioned Marmaray within Uber as a pipeline connecting data from any source to any sink depending on customer preference:
https://eng.uber.com/marmaray-hadoop-ingestion-open-source/
(Direct GitHub repo: https://github.com/uber/marmaray Kafka Kafka Manager )
- Performance886
- Super fast542
- Ease of use513
- In-memory cache444
- Advanced key-value cache324
- Open source194
- Easy to deploy182
- Stable164
- Free155
- Fast121
- High-Performance42
- High Availability40
- Data Structures35
- Very Scalable32
- Replication24
- Great community22
- Pub/Sub22
- "NoSQL" key-value data store19
- Hashes16
- Sets13
- Sorted Sets11
- NoSQL10
- Lists10
- Async replication9
- BSD licensed9
- Bitmaps8
- Integrates super easy with Sidekiq for Rails background8
- Keys with a limited time-to-live7
- Open Source7
- Lua scripting6
- Strings6
- Awesomeness for Free5
- Hyperloglogs5
- Transactions4
- Outstanding performance4
- Runs server side LUA4
- LRU eviction of keys4
- Feature Rich4
- Written in ANSI C4
- Networked4
- Data structure server3
- Performance & ease of use3
- Dont save data if no subscribers are found2
- Automatic failover2
- Easy to use2
- Temporarily kept on disk2
- Scalable2
- Existing Laravel Integration2
- Channels concept2
- Object [key/value] size each 500 MB2
- Simple2
- Cannot query objects directly15
- No secondary indexes for non-numeric data types3
- No WAL1
related Redis posts
StackShare Feed is built entirely with React, Glamorous, and Apollo. One of our objectives with the public launch of the Feed was to enable a Server-side rendered (SSR) experience for our organic search traffic. When you visit the StackShare Feed, and you aren't logged in, you are delivered the Trending feed experience. We use an in-house Node.js rendering microservice to generate this HTML. This microservice needs to run and serve requests independent of our Rails web app. Up until recently, we had a mono-repo with our Rails and React code living happily together and all served from the same web process. In order to deploy our SSR app into a Heroku environment, we needed to split out our front-end application into a separate repo in GitHub. The driving factor in this decision was mostly due to limitations imposed by Heroku specifically with how processes can't communicate with each other. A new SSR app was created in Heroku and linked directly to the frontend repo so it stays in-sync with changes.
Related to this, we need a way to "deploy" our frontend changes to various server environments without building & releasing the entire Ruby application. We built a hybrid Amazon S3 Amazon CloudFront solution to host our Webpack bundles. A new CircleCI script builds the bundles and uploads them to S3. The final step in our rollout is to update some keys in Redis so our Rails app knows which bundles to serve. The result of these efforts were significant. Our frontend team now moves independently of our backend team, our build & release process takes only a few minutes, we are now using an edge CDN to serve JS assets, and we have pre-rendered React pages!
#StackDecisionsLaunch #SSR #Microservices #FrontEndRepoSplit
Our whole DevOps stack consists of the following tools:
- GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
- Respectively Git as revision control system
- SourceTree as Git GUI
- Visual Studio Code as IDE
- CircleCI for continuous integration (automatize development process)
- Prettier / TSLint / ESLint as code linter
- SonarQube as quality gate
- Docker as container management (incl. Docker Compose for multi-container application management)
- VirtualBox for operating system simulation tests
- Kubernetes as cluster management for docker containers
- Heroku for deploying in test environments
- nginx as web server (preferably used as facade server in production environment)
- SSLMate (using OpenSSL) for certificate management
- Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
- PostgreSQL as preferred database system
- Redis as preferred in-memory database/store (great for caching)
The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:
- Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
- Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
- Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
- Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
- Scalability: All-in-one framework for distributed systems.
- Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
- High performance18
- Flexible data model, easy scalability, extremely fast18
- Mobile app support9
- You can query it with Ansi-92 SQL7
- All nodes can be read/write6
- Equal nodes in cluster, allowing fast, flexible changes5
- Both a key-value store and document (JSON) db5
- Open source, community and enterprise editions5
- Automatic configuration of sharding4
- Local cache capability4
- Easy setup3
- Linearly scalable, useful to large number of tps3
- Easy cluster administration3
- Cross data center replication3
- SDKs in popular programming languages3
- Elasticsearch connector3
- Web based management, query and monitoring panel3
- Map reduce views2
- DBaaS available2
- NoSQL2
- Buckets, Scopes, Collections & Documents1
- FTS + SQL together1
- Terrible query language3
related Couchbase posts
We implemented our first large scale EPR application from naologic.com using CouchDB .
Very fast, replication works great, doesn't consume much RAM, queries are blazing fast but we found a problem: the queries were very hard to write, it took a long time to figure out the API, we had to go and write our own @nodejs library to make it work properly.
It lost most of its support. Since then, we migrated to Couchbase and the learning curve was steep but all worth it. Memcached indexing out of the box, full text search works great.
Hey, we want to build a referral campaign mechanism that will probably contain millions of records within the next few years. We want fast read access based on IDs or some indexes, and isolation is crucial as some listeners will try to update the same document at the same time. What's your suggestion between Couchbase and MongoDB? Thanks!
- Sql800
- Free679
- Easy562
- Widely used528
- Open source490
- High availability180
- Cross-platform support160
- Great community104
- Secure79
- Full-text indexing and searching75
- Fast, open, available26
- Reliable16
- SSL support16
- Robust15
- Enterprise Version9
- Easy to set up on all platforms7
- NoSQL access to JSON data type3
- Relational database1
- Easy, light, scalable1
- Sequel Pro (best SQL GUI)1
- Replica Support1
- Owned by a company with their own agenda16
- Can't roll back schema changes3
related MySQL posts
When I joined NYT there was already broad dissatisfaction with the LAMP (Linux Apache HTTP Server MySQL PHP) Stack and the front end framework, in particular. So, I wasn't passing judgment on it. I mean, LAMP's fine, you can do good work in LAMP. It's a little dated at this point, but it's not ... I didn't want to rip it out for its own sake, but everyone else was like, "We don't like this, it's really inflexible." And I remember from being outside the company when that was called MIT FIVE when it had launched. And been observing it from the outside, and I was like, you guys took so long to do that and you did it so carefully, and yet you're not happy with your decisions. Why is that? That was more the impetus. If we're going to do this again, how are we going to do it in a way that we're gonna get a better result?
So we're moving quickly away from LAMP, I would say. So, right now, the new front end is React based and using Apollo. And we've been in a long, protracted, gradual rollout of the core experiences.
React is now talking to GraphQL as a primary API. There's a Node.js back end, to the front end, which is mainly for server-side rendering, as well.
Behind there, the main repository for the GraphQL server is a big table repository, that we call Bodega because it's a convenience store. And that reads off of a Kafka pipeline.
We've been using PostgreSQL since the very early days of Zulip, but we actually didn't use it from the beginning. Zulip started out as a MySQL project back in 2012, because we'd heard it was a good choice for a startup with a wide community. However, we found that even though we were using the Django ORM for most of our database access, we spent a lot of time fighting with MySQL. Issues ranged from bad collation defaults, to bad query plans which required a lot of manual query tweaks.
We ended up getting so frustrated that we tried out PostgresQL, and the results were fantastic. We didn't have to do any real customization (just some tuning settings for how big a server we had), and all of our most important queries were faster out of the box. As a result, we were able to delete a bunch of custom queries escaping the ORM that we'd written to make the MySQL query planner happy (because postgres just did the right thing automatically).
And then after that, we've just gotten a ton of value out of postgres. We use its excellent built-in full-text search, which has helped us avoid needing to bring in a tool like Elasticsearch, and we've really enjoyed features like its partial indexes, which saved us a lot of work adding unnecessary extra tables to get good performance for things like our "unread messages" and "starred messages" indexes.
I can't recommend it highly enough.
- Relational database763
- High availability510
- Enterprise class database439
- Sql383
- Sql + nosql304
- Great community173
- Easy to setup147
- Heroku131
- Secure by default130
- Postgis113
- Supports Key-Value50
- Great JSON support48
- Cross platform34
- Extensible33
- Replication28
- Triggers26
- Multiversion concurrency control23
- Rollback23
- Open source21
- Heroku Add-on18
- Stable, Simple and Good Performance17
- Powerful15
- Lets be serious, what other SQL DB would you go for?13
- Good documentation11
- Scalable9
- Free8
- Reliable8
- Intelligent optimizer8
- Transactional DDL7
- Modern7
- One stop solution for all things sql no matter the os6
- Relational database with MVCC5
- Faster Development5
- Full-Text Search4
- Developer friendly4
- Excellent source code3
- Free version3
- Great DB for Transactional system or Application3
- Relational datanbase3
- search3
- Open-source3
- Text2
- Full-text2
- Can handle up to petabytes worth of size1
- Composability1
- Multiple procedural languages supported1
- Native0
- Table/index bloatings10
related PostgreSQL posts
Our whole DevOps stack consists of the following tools:
- GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
- Respectively Git as revision control system
- SourceTree as Git GUI
- Visual Studio Code as IDE
- CircleCI for continuous integration (automatize development process)
- Prettier / TSLint / ESLint as code linter
- SonarQube as quality gate
- Docker as container management (incl. Docker Compose for multi-container application management)
- VirtualBox for operating system simulation tests
- Kubernetes as cluster management for docker containers
- Heroku for deploying in test environments
- nginx as web server (preferably used as facade server in production environment)
- SSLMate (using OpenSSL) for certificate management
- Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
- PostgreSQL as preferred database system
- Redis as preferred in-memory database/store (great for caching)
The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:
- Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
- Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
- Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
- Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
- Scalability: All-in-one framework for distributed systems.
- Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.
We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient
Based on the above criteria, we selected the following tools to perform the end to end data replication:
We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.
We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.
In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.
Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.
In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!
Oracle
- Reliable44
- Enterprise33
- High Availability15
- Hard to maintain5
- Expensive5
- Maintainable4
- Hard to use4
- High complexity3
- Expensive14
related Oracle posts
Hi. We are planning to develop web, desktop, and mobile app for procurement, logistics, and contracts. Procure to Pay and Source to pay, spend management, supplier management, catalog management. ( similar to SAP Ariba, gap.com, coupa.com, ivalua.com vroozi.com, procurify.com
We got stuck when deciding which technology stack is good for the future. We look forward to your kind guidance that will help us.
We want to integrate with multiple databases with seamless bidirectional integration. What APIs and middleware available are best to achieve this? SAP HANA, Oracle, MySQL, MongoDB...
ASP.NET / Node.js / Laravel. ......?
Please guide us
I recently started a new position as a data scientist at an E-commerce company. The company is founded about 4-5 years ago and is new to many data-related areas. Specifically, I'm their first data science employee. So I have to take care of both data analysis tasks as well as bringing new technologies to the company.
They have used Elasticsearch (and Kibana) to have reporting dashboards on their daily purchases and users interactions on their e-commerce website.
They also use the Oracle database system to keep records of their daily turnovers and lists of their current products, clients, and sellers lists.
They use Data-Warehouse with cockpit 10 for generating reports on different aspects of their business including number 2 in this list.
At the moment, I grab batches of data from their system to perform predictive analytics from data science perspectives. In some cases, I use a static form of data such as monthly turnover, client values, and high-demand products, and run my predictive analysis using Python (VS code). Also, I use Google Datastudio or Google Sheets to present my findings. In other cases, I try to do time-series analysis using offline batches of data extracted from Elastic Search to do user recommendations and user personalization.
I really want to use modern data science tools such as Apache Spark, Google BigQuery, AWS, Azure, or others where they really fit. I think these tools can improve my performance as a data scientist and can provide more continuous analytics of their business interactions. But honestly, I'm not sure where each tool is needed and what part of their system should be replaced by or combined with the current state of technology to improve productivity from the above perspectives.