Avatar of conor
Tech Brand Mgr, Office of CTO at Uber

Why we built an open source, distributed training framework for TensorFlow , Keras , and PyTorch:

At Uber, we apply deep learning across our business; from self-driving research to trip forecasting and fraud prevention, deep learning enables our engineers and data scientists to create better experiences for our users.

TensorFlow has become a preferred deep learning library at Uber for a variety of reasons. To start, the framework is one of the most widely used open source frameworks for deep learning, which makes it easy to onboard new users. It also combines high performance with an ability to tinker with low-level model details鈥攆or instance, we can use both high-level APIs, such as Keras, and implement our own custom operators using NVIDIA鈥檚 CUDA toolkit.

Uber has introduced Michelangelo (https://eng.uber.com/michelangelo/), an internal ML-as-a-service platform that democratizes machine learning and makes it easy to build and deploy these systems at scale. In this article, we pull back the curtain on Horovod, an open source component of Michelangelo鈥檚 deep learning toolkit which makes it easier to start鈥攁nd speed up鈥攄istributed deep learning projects with TensorFlow:


(Direct GitHub repo: https://github.com/uber/horovod)

Meet Horovod: Uber's Open Source Distributed Deep Learning Framework (eng.uber.com)
7 upvotes955.6K views
Avatar of Conor Myhrvold

Conor Myhrvold

Tech Brand Mgr, Office of CTO at Uber