What is Google Cloud Functions and what are its top alternatives?
Google Cloud Functions is a serverless platform that allows developers to build, deploy, and scale applications without managing infrastructure. Key features include automatic scaling, pay-as-you-go pricing, support for multiple programming languages, and integration with other Google Cloud services. However, Google Cloud Functions has limitations such as limited execution time (9 minutes), lack of support for custom runtimes, and slower cold start times.
AWS Lambda: AWS Lambda is a serverless compute service that lets you run code without provisioning or managing servers. Key features include automatic scaling, support for multiple languages, seamless integration with other AWS services, and flexible pricing options. Pros: Large community support, extensive documentation. Cons: Learning curve for beginners.
Azure Functions: Azure Functions is a serverless compute service that enables you to run event-triggered code without having to manage infrastructure. Key features include support for multiple languages, pay-as-you-go pricing, seamless integration with Azure services, and monitoring and debugging tools. Pros: Tight integration with other Azure services, enterprise-ready. Cons: Less flexible pricing compared to competitors.
IBM Cloud Functions: IBM Cloud Functions is a serverless platform that allows you to execute code in response to events without managing servers. Key features include support for multiple programming languages, seamless integration with other IBM Cloud services, and auto-scaling capabilities. Pros: Strong security features, enterprise-grade support. Cons: Limited third-party integrations compared to competitors.
Firebase Cloud Functions: Firebase Cloud Functions is a serverless framework by Google that integrates with Firebase and Google Cloud services. Key features include real-time integration with Firebase database and Cloud Storage, support for multiple languages, and ease of use for mobile and web app developers. Pros: Tight integration with Firebase services, seamless deployment process. Cons: Limited scalability options compared to other cloud providers.
Oracle Functions: Oracle Functions is a serverless platform that allows developers to build, deploy, and run applications without managing infrastructure. Key features include support for multiple languages, seamless integration with Oracle Cloud services, and customizable scaling options. Pros: Strong security and compliance features, robust monitoring tools. Cons: Limited third-party integrations compared to other cloud providers.
Kubeless: Kubeless is a serverless framework built on Kubernetes that allows you to deploy functions as Kubernetes resources. Key features include support for multiple runtimes, event triggers, auto-scaling, and seamless integration with Kubernetes ecosystem. Pros: Flexibility to use any language/runtime, easy deployment process. Cons: Requires Kubernetes knowledge, less user-friendly than managed serverless platforms.
OpenWhisk: Apache OpenWhisk is an open-source serverless platform that enables you to execute functions in response to events. Key features include support for multiple programming languages, event-driven architecture, auto-scaling, and extensibility through custom triggers and actions. Pros: Open-source community support, customizable architecture. Cons: Steeper learning curve, limited documentation compared to commercial offerings.
Serverless Framework: Serverless Framework is an open-source tool that simplifies the deployment of serverless applications across multiple cloud providers. Key features include support for multiple cloud providers, configuration management, monitoring tools, and plugin ecosystem. Pros: Vendor-agnostic, easy to use for multi-cloud deployments. Cons: Some features limited to paid version, requires managing infrastructure configurations.
IronFunctions: IronFunctions is an open-source serverless platform that allows developers to run functions in any language on any environment. Key features include multi-language support, docker-based execution, event-driven architecture, and support for multiple cloud providers. Pros: Flexibility to run functions on-premises or in the cloud, open-source community support. Cons: Limited commercial support compared to managed serverless platforms.
Tencent Cloud Function: Tencent Cloud Function is a serverless compute service that enables you to run event-triggered code without provisioning or managing servers. Key features include support for multiple programming languages, seamless integration with Tencent Cloud services, pay-as-you-go pricing, and auto-scaling capabilities. Pros: Strong presence in Asia-Pacific region, competitive pricing. Cons: Limited global availability compared to other cloud providers.
Top Alternatives to Google Cloud Functions
- AWS Lambda
AWS Lambda is a compute service that runs your code in response to events and automatically manages the underlying compute resources for you. You can use AWS Lambda to extend other AWS services with custom logic, or create your own back-end services that operate at AWS scale, performance, and security. ...
- Google App Engine
Google has a reputation for highly reliable, high performance infrastructure. With App Engine you can take advantage of the 10 years of knowledge Google has in running massively scalable, performance driven systems. App Engine applications are easy to build, easy to maintain, and easy to scale as your traffic and data storage needs grow. ...
- Azure Functions
Azure Functions is an event driven, compute-on-demand experience that extends the existing Azure application platform with capabilities to implement code triggered by events occurring in virtually any Azure or 3rd party service as well as on-premises systems. ...
- Firebase
Firebase is a cloud service designed to power real-time, collaborative applications. Simply add the Firebase library to your application to gain access to a shared data structure; any changes you make to that data are automatically synchronized with the Firebase cloud and with other clients within milliseconds. ...
- Heroku
Heroku is a cloud application platform – a new way of building and deploying web apps. Heroku lets app developers spend 100% of their time on their application code, not managing servers, deployment, ongoing operations, or scaling. ...
- Knative
Knative provides a set of middleware components that are essential to build modern, source-centric, and container-based applications that can run anywhere: on premises, in the cloud, or even in a third-party data center ...
- NGINX
nginx [engine x] is an HTTP and reverse proxy server, as well as a mail proxy server, written by Igor Sysoev. According to Netcraft nginx served or proxied 30.46% of the top million busiest sites in Jan 2018. ...
- Apache HTTP Server
The Apache HTTP Server is a powerful and flexible HTTP/1.1 compliant web server. Originally designed as a replacement for the NCSA HTTP Server, it has grown to be the most popular web server on the Internet. ...
Google Cloud Functions alternatives & related posts
AWS Lambda
- No infrastructure129
- Cheap83
- Quick70
- Stateless59
- No deploy, no server, great sleep47
- AWS Lambda went down taking many sites with it12
- Event Driven Governance6
- Extensive API6
- Auto scale and cost effective6
- Easy to deploy6
- VPC Support5
- Integrated with various AWS services3
- Cant execute ruby or go7
- Compute time limited3
- Can't execute PHP w/o significant effort1
related AWS Lambda posts
Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.
We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient
Based on the above criteria, we selected the following tools to perform the end to end data replication:
We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.
We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.
In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.
Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.
In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!
Heroku Docker GitHub Node.js hapi Vue.js AWS Lambda Amazon S3 PostgreSQL Knex.js Checkly is a fairly young company and we're still working hard to find the correct mix of product features, price and audience.
We are focussed on tech B2B, but I always wanted to serve solo developers too. So I decided to make a $7 plan.
Why $7? Simply put, it seems to be a sweet spot for tech companies: Heroku, Docker, Github, Appoptics (Librato) all offer $7 plans. They must have done a ton of research into this, so why not piggy back that and try it out.
Enough biz talk, onto tech. The challenges were:
- Slice of a portion of the functionality so a $7 plan is still profitable. We call this the "plan limits"
- Update API and back end services to handle and enforce plan limits.
- Update the UI to kindly state plan limits are in effect on some part of the UI.
- Update the pricing page to reflect all changes.
- Keep the actual processing backend, storage and API's as untouched as possible.
In essence, we went from strictly volume based pricing to value based pricing. Here come the technical steps & decisions we made to get there.
- We updated our PostgreSQL schema so plans now have an array of "features". These are string constants that represent feature toggles.
- The Vue.js frontend reads these from the vuex store on login.
- Based on these values, the UI has simple
v-if
statements to either just show the feature or show a friendly "please upgrade" button. - The hapi API has a hook on each relevant API endpoint that checks whether a user's plan has the feature enabled, or not.
Side note: We offer 10 SMS messages per month on the developer plan. However, we were not actually counting how many people were sending. We had to update our alerting daemon (that runs on Heroku and triggers SMS messages via AWS SNS) to actually bump a counter.
What we build is basically feature-toggling based on plan features. It is very extensible for future additions. Our scheduling and storage backend that actually runs users' monitoring requests (AWS Lambda) and stores the results (S3 and Postgres) has no knowledge of all of this and remained unchanged.
Hope this helps anyone building out their SaaS and is in a similar situation.
Google App Engine
- Easy to deploy145
- Auto scaling106
- Good free plan80
- Easy management62
- Scalability56
- Low cost35
- Comprehensive set of features32
- All services in one place28
- Simple scaling22
- Quick and reliable cloud servers19
- Granular Billing6
- Easy to develop and unit test5
- Monitoring gives comprehensive set of key indicators5
- Really easy to quickly bring up a full stack3
- Create APIs quickly with cloud endpoints3
- No Ops2
- Mostly up2
related Google App Engine posts
So, the shift from Amazon EC2 to Google App Engine and generally #AWS to #GCP was a long decision and in the end, it's one that we've taken with eyes open and that we reserve the right to modify at any time. And to be clear, we continue to do a lot of stuff with AWS. But, by default, the content of the decision was, for our consumer-facing products, we're going to use GCP first. And if there's some reason why we don't think that's going to work out great, then we'll happily use AWS. In practice, that hasn't really happened. We've been able to meet almost 100% of our needs in GCP.
So it's basically mostly Google Kubernetes Engine , we're mostly running stuff on Kubernetes right now.
#AWStoGCPmigration #cloudmigration #migration





In #Aliadoc, we're exploring the crowdfunding option to get traction before launch. We are building a SaaS platform for website design customization.
For the Admin UI and website editor we use React and we're currently transitioning from a Create React App setup to a custom one because our needs have become more specific. We use CloudFlare as much as possible, it's a great service.
For routing dynamic resources and proxy tasks to feed websites to the editor we leverage CloudFlare Workers for improved responsiveness. We use Firebase for our hosting needs and user authentication while also using several Cloud Functions for Firebase to interact with other services along with Google App Engine and Google Cloud Storage, but also the Real Time Database is on the radar for collaborative website editing.
We generally hate configuration but honestly because of the stage of our project we lack resources for doing heavy sysops work. So we are basically just relying on Serverless technologies as much as we can to do all server side processing.
Visual Studio Code definitively makes programming a much easier and enjoyable task, we just love it. We combine it with Bitbucket for our source code control needs.
- Pay only when invoked14
- Great developer experience for C#11
- Multiple languages supported9
- Great debugging support7
- Can be used as lightweight https service5
- Easy scalability4
- WebHooks3
- Costo3
- Event driven2
- Azure component events for Storage, services etc2
- Poor developer experience for C#2
- No persistent (writable) file system available1
- Poor support for Linux environments1
- Sporadic server & language runtime issues1
- Not suited for long-running applications1
related Azure Functions posts





CodeFactor being a #SAAS product, our goal was to run on a cloud-native infrastructure since day one. We wanted to stay product focused, rather than having to work on the infrastructure that supports the application. We needed a cloud-hosting provider that would be reliable, economical and most efficient for our product.
CodeFactor.io aims to provide an automated and frictionless code review service for software developers. That requires agility, instant provisioning, autoscaling, security, availability and compliance management features. We looked at the top three #IAAS providers that take up the majority of market share: Amazon's Amazon EC2 , Microsoft's Microsoft Azure, and Google Compute Engine.
AWS has been available since 2006 and has developed the most extensive services ant tools variety at a massive scale. Azure and GCP are about half the AWS age, but also satisfied our technical requirements.
It is worth noting that even though all three providers support Docker containerization services, GCP has the most robust offering due to their investments in Kubernetes. Also, if you are a Microsoft shop, and develop in .NET - Visual Studio Azure shines at integration there and all your existing .NET code works seamlessly on Azure. All three providers have serverless computing offerings (AWS Lambda, Azure Functions, and Google Cloud Functions). Additionally, all three providers have machine learning tools, but GCP appears to be the most developer-friendly, intuitive and complete when it comes to #Machinelearning and #AI.
The prices between providers are competitive across the board. For our requirements, AWS would have been the most expensive, GCP the least expensive and Azure was in the middle. Plus, if you #Autoscale frequently with large deltas, note that Azure and GCP have per minute billing, where AWS bills you per hour. We also applied for the #Startup programs with all three providers, and this is where Azure shined. While AWS and GCP for startups would have covered us for about one year of infrastructure costs, Azure Sponsorship would cover about two years of CodeFactor's hosting costs. Moreover, Azure Team was terrific - I felt that they wanted to work with us where for AWS and GCP we were just another startup.
In summary, we were leaning towards GCP. GCP's advantages in containerization, automation toolset, #Devops mindset, and pricing were the driving factors there. Nevertheless, we could not say no to Azure's financial incentives and a strong sense of partnership and support throughout the process.
Bottom line is, IAAS offerings with AWS, Azure, and GCP are evolving fast. At CodeFactor, we aim to be platform agnostic where it is practical and retain the flexibility to cherry-pick the best products across providers.
In a couple of recent projects we had an opportunity to try out the new Serverless approach to building web applications. It wasn't necessarily a question if we should use any particular vendor but rather "if" we can consider serverless a viable option for building apps. Obviously our goal was also to get a feel for this technology and gain some hands-on experience.
We did consider AWS Lambda, Firebase from Google as well as Azure Functions. Eventually we went with AWS Lambdas.
PROS- No servers to manage (obviously!)
- Limited fixed costs – you pay only for used time
- Automated scaling and balancing
- Automatic failover (or, at this level of abstraction, no failover problem at all)
- Security easier to provide and audit
- Low overhead at the start (with the certain level of knowledge)
- Short time to market
- Easy handover - deployment coupled with code
- Perfect choice for lean startups with fast-paced iterations
- Augmentation for the classic cloud, server(full) approach
- Not much know-how and best practices available about structuring the code and projects on the market
- Not suitable for complex business logic due to the risk of producing highly coupled code
- Cost difficult to estimate (helpful tools: serverlesscalc.com)
- Difficulty in migration to other platforms (Vendor lock⚠️)
- Little engineers with experience in serverless on the job market
- Steep learning curve for engineers without any cloud experience
More details are on our blog: https://evojam.com/blog/2018/12/5/should-you-go-serverless-meet-the-benefits-and-flaws-of-new-wave-of-cloud-solutions I hope it helps 🙌 & I'm curious of your experiences.
- Realtime backend made easy371
- Fast and responsive270
- Easy setup242
- Real-time215
- JSON191
- Free134
- Backed by google128
- Angular adaptor83
- Reliable68
- Great customer support36
- Great documentation32
- Real-time synchronization25
- Mobile friendly21
- Rapid prototyping19
- Great security14
- Automatic scaling12
- Freakingly awesome11
- Super fast development8
- Angularfire is an amazing addition!8
- Chat8
- Firebase hosting6
- Built in user auth/oauth6
- Awesome next-gen backend6
- Ios adaptor6
- Speed of light4
- Very easy to use4
- Great3
- It's made development super fast3
- Brilliant for startups3
- Free hosting2
- Cloud functions2
- JS Offline and Sync suport2
- Low battery consumption2
- .net2
- The concurrent updates create a great experience2
- Push notification2
- I can quickly create static web apps with no backend2
- Great all-round functionality2
- Free authentication solution2
- Easy Reactjs integration1
- Google's support1
- Free SSL1
- CDN & cache out of the box1
- Easy to use1
- Large1
- Faster workflow1
- Serverless1
- Good Free Limits1
- Simple and easy1
- Can become expensive31
- No open source, you depend on external company16
- Scalability is not infinite15
- Not Flexible Enough9
- Cant filter queries7
- Very unstable server3
- No Relational Data3
- Too many errors2
- No offline sync2
related Firebase posts
Hi Otensia! I'd definitely recommend using the skills you've already got and building with JavaScript is a smart way to go these days. Most platform services have JavaScript/Node SDKs or NPM packages, many serverless platforms support Node in case you need to write any backend logic, and JavaScript is incredibly popular - meaning it will be easy to hire for, should you ever need to.
My advice would be "don't reinvent the wheel". If you already have a skill set that will work well to solve the problem at hand, and you don't need it for any other projects, don't spend the time jumping into a new language. If you're looking for an excuse to learn something new, it would be better to invest that time in learning a new platform/tool that compliments your knowledge of JavaScript. For this project, I might recommend using Netlify, Vercel, or Google Firebase to quickly and easily deploy your web app. If you need to add user authentication, there are great examples out there for Firebase Authentication, Auth0, or even Magic (a newcomer on the Auth scene, but very user friendly). All of these services work very well with a JavaScript-based application.
For inboxkitten.com, an opensource disposable email service;
We migrated our serverless workload from Cloud Functions for Firebase to CloudFlare workers, taking advantage of the lower cost and faster-performing edge computing of Cloudflare network. Made possible due to our extremely low CPU and RAM overhead of our serverless functions.
If I were to summarize the limitation of Cloudflare (as oppose to firebase/gcp functions), it would be ...
- <5ms CPU time limit
- Incompatible with express.js
- one script limitation per domain
Limitations our workload is able to conform with (YMMV)
For hosting of static files, we migrated from Firebase to CommonsHost
More details on the trade-off in between both serverless providers is in the article
Heroku
- Easy deployment703
- Free for side projects459
- Huge time-saver374
- Simple scaling348
- Low devops skills required261
- Easy setup190
- Add-ons for almost everything174
- Beginner friendly153
- Better for startups150
- Low learning curve133
- Postgres hosting48
- Easy to add collaborators41
- Faster development30
- Awesome documentation24
- Simple rollback19
- Focus on product, not deployment19
- Natural companion for rails development15
- Easy integration15
- Great customer support12
- GitHub integration8
- Painless & well documented6
- No-ops6
- I love that they make it free to launch a side project4
- Free4
- Great UI3
- Just works3
- PostgreSQL forking and following2
- MySQL extension2
- Security1
- Able to host stuff good like Discord Bot1
- Sec0
- Super expensive27
- Not a whole lot of flexibility9
- No usable MySQL option7
- Storage7
- Low performance on free tier5
- 24/7 support is $1,000 per month2
related Heroku posts
StackShare Feed is built entirely with React, Glamorous, and Apollo. One of our objectives with the public launch of the Feed was to enable a Server-side rendered (SSR) experience for our organic search traffic. When you visit the StackShare Feed, and you aren't logged in, you are delivered the Trending feed experience. We use an in-house Node.js rendering microservice to generate this HTML. This microservice needs to run and serve requests independent of our Rails web app. Up until recently, we had a mono-repo with our Rails and React code living happily together and all served from the same web process. In order to deploy our SSR app into a Heroku environment, we needed to split out our front-end application into a separate repo in GitHub. The driving factor in this decision was mostly due to limitations imposed by Heroku specifically with how processes can't communicate with each other. A new SSR app was created in Heroku and linked directly to the frontend repo so it stays in-sync with changes.
Related to this, we need a way to "deploy" our frontend changes to various server environments without building & releasing the entire Ruby application. We built a hybrid Amazon S3 Amazon CloudFront solution to host our Webpack bundles. A new CircleCI script builds the bundles and uploads them to S3. The final step in our rollout is to update some keys in Redis so our Rails app knows which bundles to serve. The result of these efforts were significant. Our frontend team now moves independently of our backend team, our build & release process takes only a few minutes, we are now using an edge CDN to serve JS assets, and we have pre-rendered React pages!
#StackDecisionsLaunch #SSR #Microservices #FrontEndRepoSplit
Our whole DevOps stack consists of the following tools:
- GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
- Respectively Git as revision control system
- SourceTree as Git GUI
- Visual Studio Code as IDE
- CircleCI for continuous integration (automatize development process)
- Prettier / TSLint / ESLint as code linter
- SonarQube as quality gate
- Docker as container management (incl. Docker Compose for multi-container application management)
- VirtualBox for operating system simulation tests
- Kubernetes as cluster management for docker containers
- Heroku for deploying in test environments
- nginx as web server (preferably used as facade server in production environment)
- SSLMate (using OpenSSL) for certificate management
- Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
- PostgreSQL as preferred database system
- Redis as preferred in-memory database/store (great for caching)
The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:
- Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
- Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
- Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
- Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
- Scalability: All-in-one framework for distributed systems.
- Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
- Portability5
- Autoscaling4
- Open source3
- Eventing3
- Secure Eventing3
- On top of Kubernetes3
related Knative posts
Currently been using an older version of OpenFaaS, but the new version now requires payment for things we did on the older version. Been looking for alternatives to OpenFaas that have Kafka integrations, and scale to 0 capabilities.
looked at Apache OpenWhisk, but we run on RKE2, and my initial install of Openwhisk appears to be too out of date to support RKE2 and missing images from docker.io. So now looking at Knative. What are your thoughts? We need support to be able to process functions about 10k a min, which can vary on time of execution, between ms and mins. So looking for horizontal scaling that can be controlled by other metrics, than just cpu and ram utilization, but more so, for example if the wait is over 5 scale out.. Issue with older openfaas, was scaling on RKE2 was not working great, for example, I could get it to scale from 5 to 20 pods, but only 12 of them would ever have data, but my backlog would have 100k's of files waiting.. So even though it scaled up, it was as if the distribution of work was only being married to specific pods. If I killed the pods that had no work, they come up again with no work, if I killed one with work, then another pod would scale up and another pod would start to get work. And On occasion with hours, it would reset down to the original deployment allotment of pods, and never scale up again, until I go into Kubernetes and tell it to add more pods.
So hoping to find a solution that doesn't require as much triage, to work with scaling, as points in time we are at higher volume and other points of time could be no volume.
NGINX
- High-performance http server1.5K
- Performance894
- Easy to configure730
- Open source607
- Load balancer530
- Free289
- Scalability288
- Web server226
- Simplicity175
- Easy setup136
- Content caching30
- Web Accelerator21
- Capability15
- Fast14
- High-latency12
- Predictability12
- Reverse Proxy8
- Supports http/27
- The best of them7
- Great Community5
- Lots of Modules5
- Enterprise version5
- High perfomance proxy server4
- Embedded Lua scripting3
- Streaming media delivery3
- Streaming media3
- Reversy Proxy3
- Blash2
- GRPC-Web2
- Lightweight2
- Fast and easy to set up2
- Slim2
- saltstack2
- Virtual hosting1
- Narrow focus. Easy to configure. Fast1
- Along with Redis Cache its the Most superior1
- Ingress controller1
- Advanced features require subscription10
related NGINX posts
Our whole DevOps stack consists of the following tools:
- GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
- Respectively Git as revision control system
- SourceTree as Git GUI
- Visual Studio Code as IDE
- CircleCI for continuous integration (automatize development process)
- Prettier / TSLint / ESLint as code linter
- SonarQube as quality gate
- Docker as container management (incl. Docker Compose for multi-container application management)
- VirtualBox for operating system simulation tests
- Kubernetes as cluster management for docker containers
- Heroku for deploying in test environments
- nginx as web server (preferably used as facade server in production environment)
- SSLMate (using OpenSSL) for certificate management
- Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
- PostgreSQL as preferred database system
- Redis as preferred in-memory database/store (great for caching)
The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:
- Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
- Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
- Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
- Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
- Scalability: All-in-one framework for distributed systems.
- Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
We chose AWS because, at the time, it was really the only cloud provider to choose from.
We tend to use their basic building blocks (EC2, ELB, Amazon S3, Amazon RDS) rather than vendor specific components like databases and queuing. We deliberately decided to do this to ensure we could provide multi-cloud support or potentially move to another cloud provider if the offering was better for our customers.
We’ve utilized c3.large nodes for both the Node.js deployment and then for the .NET Core deployment. Both sit as backends behind an nginx instance and are managed using scaling groups in Amazon EC2 sitting behind a standard AWS Elastic Load Balancing (ELB).
While we’re satisfied with AWS, we do review our decision each year and have looked at Azure and Google Cloud offerings.
#CloudHosting #WebServers #CloudStorage #LoadBalancerReverseProxy
Apache HTTP Server
- Web server479
- Most widely-used web server305
- Virtual hosting217
- Fast148
- Ssl support138
- Since 199644
- Asynchronous28
- Robust5
- Proven over many years4
- Mature2
- Perfomance2
- Perfect Support1
- Many available modules0
- Many available modules0
- Hard to set up4
related Apache HTTP Server posts
When I joined NYT there was already broad dissatisfaction with the LAMP (Linux Apache HTTP Server MySQL PHP) Stack and the front end framework, in particular. So, I wasn't passing judgment on it. I mean, LAMP's fine, you can do good work in LAMP. It's a little dated at this point, but it's not ... I didn't want to rip it out for its own sake, but everyone else was like, "We don't like this, it's really inflexible." And I remember from being outside the company when that was called MIT FIVE when it had launched. And been observing it from the outside, and I was like, you guys took so long to do that and you did it so carefully, and yet you're not happy with your decisions. Why is that? That was more the impetus. If we're going to do this again, how are we going to do it in a way that we're gonna get a better result?
So we're moving quickly away from LAMP, I would say. So, right now, the new front end is React based and using Apollo. And we've been in a long, protracted, gradual rollout of the core experiences.
React is now talking to GraphQL as a primary API. There's a Node.js back end, to the front end, which is mainly for server-side rendering, as well.
Behind there, the main repository for the GraphQL server is a big table repository, that we call Bodega because it's a convenience store. And that reads off of a Kafka pipeline.
We've been happy with nginx as part of our stack. As an open source web application that folks install on-premise, the configuration system for the webserver is pretty important to us. I have a few complaints (e.g. the configuration syntax for conditionals is a pain), but overall we've found it pretty easy to build a configurable set of options (see link) for how to run Zulip on nginx, both directly and with a remote reverse proxy in front of it, with a minimum of code duplication.
Certainly I've been a lot happier with it than I was working with Apache HTTP Server in past projects.