What is HBase and what are its top alternatives?
Top Alternatives to HBase
- Cassandra
Partitioning means that Cassandra can distribute your data across multiple machines in an application-transparent matter. Cassandra will automatically repartition as machines are added and removed from the cluster. Row store means that like relational databases, Cassandra organizes data by rows and columns. The Cassandra Query Language (CQL) is a close relative of SQL. ...
- Google Cloud Bigtable
Google Cloud Bigtable offers you a fast, fully managed, massively scalable NoSQL database service that's ideal for web, mobile, and Internet of Things applications requiring terabytes to petabytes of data. Unlike comparable market offerings, Cloud Bigtable doesn't require you to sacrifice speed, scale, or cost efficiency when your applications grow. Cloud Bigtable has been battle-tested at Google for more than 10 years—it's the database driving major applications such as Google Analytics and Gmail. ...
- MongoDB
MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding. ...
- Hadoop
The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using simple programming models. It is designed to scale up from single servers to thousands of machines, each offering local computation and storage. ...
- Druid
Druid is a distributed, column-oriented, real-time analytics data store that is commonly used to power exploratory dashboards in multi-tenant environments. Druid excels as a data warehousing solution for fast aggregate queries on petabyte sized data sets. Druid supports a variety of flexible filters, exact calculations, approximate algorithms, and other useful calculations. ...
- Couchbase
Developed as an alternative to traditionally inflexible SQL databases, the Couchbase NoSQL database is built on an open source foundation and architected to help developers solve real-world problems and meet high scalability demands. ...
- Apache Hive
Hive facilitates reading, writing, and managing large datasets residing in distributed storage using SQL. Structure can be projected onto data already in storage. ...
- RocksDB
RocksDB is an embeddable persistent key-value store for fast storage. RocksDB can also be the foundation for a client-server database but our current focus is on embedded workloads. RocksDB builds on LevelDB to be scalable to run on servers with many CPU cores, to efficiently use fast storage, to support IO-bound, in-memory and write-once workloads, and to be flexible to allow for innovation. ...
HBase alternatives & related posts
Cassandra
- Distributed119
- High performance98
- High availability81
- Easy scalability74
- Replication53
- Reliable26
- Multi datacenter deployments26
- Schema optional10
- OLTP9
- Open source8
- Workload separation (via MDC)2
- Fast1
- Reliability of replication3
- Size1
- Updates1
related Cassandra posts
1.0 of Stream leveraged Cassandra for storing the feed. Cassandra is a common choice for building feeds. Instagram, for instance started, out with Redis but eventually switched to Cassandra to handle their rapid usage growth. Cassandra can handle write heavy workloads very efficiently.
Cassandra is a great tool that allows you to scale write capacity simply by adding more nodes, though it is also very complex. This complexity made it hard to diagnose performance fluctuations. Even though we had years of experience with running Cassandra, it still felt like a bit of a black box. When building Stream 2.0 we decided to go for a different approach and build Keevo. Keevo is our in-house key-value store built upon RocksDB, gRPC and Raft.
RocksDB is a highly performant embeddable database library developed and maintained by Facebook’s data engineering team. RocksDB started as a fork of Google’s LevelDB that introduced several performance improvements for SSD. Nowadays RocksDB is a project on its own and is under active development. It is written in C++ and it’s fast. Have a look at how this benchmark handles 7 million QPS. In terms of technology it’s much more simple than Cassandra.
This translates into reduced maintenance overhead, improved performance and, most importantly, more consistent performance. It’s interesting to note that LinkedIn also uses RocksDB for their feed.
#InMemoryDatabases #DataStores #Databases
Trying to establish a data lake(or maybe puddle) for my org's Data Sharing project. The idea is that outside partners would send cuts of their PHI data, regardless of format/variables/systems, to our Data Team who would then harmonize the data, create data marts, and eventually use it for something. End-to-end, I'm envisioning:
- Ingestion->Secure, role-based, self service portal for users to upload data (1a. bonus points if it can preform basic validations/masking)
- Storage->Amazon S3 seems like the cheapest. We probably won't need very big, even at full capacity. Our current storage is a secure Box folder that has ~4GB with several batches of test data, code, presentations, and planning docs.
- Data Catalog-> AWS Glue? Azure Data Factory? Snowplow? is the main difference basically based on the vendor? We also will have Data Dictionaries/Codebooks from submitters. Where would they fit in?
- Partitions-> I've seen Cassandra and YARN mentioned, but have no experience with either
- Processing-> We want to use SAS if at all possible. What will work with SAS code?
- Pipeline/Automation->The check-in and verification processes that have been outlined are rather involved. Some sort of automated messaging or approval workflow would be nice
- I have very little guidance on what a "Data Mart" should look like, so I'm going with the idea that it would be another "experimental" partition. Unless there's an actual mart-building paradigm I've missed?
- An end user might use the catalog to pull certain de-identified data sets from the marts. Again, role-based access and self-service gui would be preferable. I'm the only full-time tech person on this project, but I'm mostly an OOP, HTML, JavaScript, and some SQL programmer. Most of this is out of my repertoire. I've done a lot of research, but I can't be an effective evangelist without hands-on experience. Since we're starting a new year of our grant, they've finally decided to let me try some stuff out. Any pointers would be appreciated!
Google Cloud Bigtable
- High performance11
- Fully managed9
- High scalability5
related Google Cloud Bigtable posts
Context: I wanted to create an end to end IoT data pipeline simulation in Google Cloud IoT Core and other GCP services. I never touched Terraform meaningfully until working on this project, and it's one of the best explorations in my development career. The documentation and syntax is incredibly human-readable and friendly. I'm used to building infrastructure through the google apis via Python , but I'm so glad past Sung did not make that decision. I was tempted to use Google Cloud Deployment Manager, but the templates were a bit convoluted by first impression. I'm glad past Sung did not make this decision either.
Solution: Leveraging Google Cloud Build Google Cloud Run Google Cloud Bigtable Google BigQuery Google Cloud Storage Google Compute Engine along with some other fun tools, I can deploy over 40 GCP resources using Terraform!
Check Out My Architecture: CLICK ME
Check out the GitHub repo attached
I'm trying to build a way to read financial data really, really fast, for low cost. We are write/update-light (in this arena) and read-heavy. Google BigQuery being serverless can keep costs beyond low, but query speeds are always a few seconds because, I think, of the lack of indexing and potential to take advantage of the structure of the common queries. I have tried various partitions on BigQuery to speed things up too with some success but nothing extraordinary. I have never used Google Cloud Bigtable but get how it works conceptually. I believe it would make date-range based queries markedly faster. Question is, are there ways to take advantage of date-ranges in BigQuery, or does it makes sense to just shift to BigTable for mega-fast reads? I'd love to get sub-50ms.
- Document-oriented storage828
- No sql593
- Ease of use553
- Fast464
- High performance410
- Free255
- Open source218
- Flexible180
- Replication & high availability145
- Easy to maintain112
- Querying42
- Easy scalability39
- Auto-sharding38
- High availability37
- Map/reduce31
- Document database27
- Easy setup25
- Full index support25
- Reliable16
- Fast in-place updates15
- Agile programming, flexible, fast14
- No database migrations12
- Easy integration with Node.Js8
- Enterprise8
- Enterprise Support6
- Great NoSQL DB5
- Support for many languages through different drivers4
- Schemaless3
- Aggregation Framework3
- Drivers support is good3
- Fast2
- Managed service2
- Easy to Scale2
- Awesome2
- Consistent2
- Good GUI1
- Acid Compliant1
- Very slowly for connected models that require joins6
- Not acid compliant3
- Proprietary query language2
related MongoDB posts
Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.
We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient
Based on the above criteria, we selected the following tools to perform the end to end data replication:
We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.
We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.
In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.
Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.
In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!
We use MongoDB as our primary #datastore. Mongo's approach to replica sets enables some fantastic patterns for operations like maintenance, backups, and #ETL.
As we pull #microservices from our #monolith, we are taking the opportunity to build them with their own datastores using PostgreSQL. We also use Redis to cache data we’d never store permanently, and to rate-limit our requests to partners’ APIs (like GitHub).
When we’re dealing with large blobs of immutable data (logs, artifacts, and test results), we store them in Amazon S3. We handle any side-effects of S3’s eventual consistency model within our own code. This ensures that we deal with user requests correctly while writes are in process.
- Great ecosystem39
- One stack to rule them all11
- Great load balancer4
- Amazon aws1
- Java syntax1
related Hadoop posts
The early data ingestion pipeline at Pinterest used Kafka as the central message transporter, with the app servers writing messages directly to Kafka, which then uploaded log files to S3.
For databases, a custom Hadoop streamer pulled database data and wrote it to S3.
Challenges cited for this infrastructure included high operational overhead, as well as potential data loss occurring when Kafka broker outages led to an overflow of in-memory message buffering.
Why we built Marmaray, an open source generic data ingestion and dispersal framework and library for Apache Hadoop :
Built and designed by our Hadoop Platform team, Marmaray is a plug-in-based framework built on top of the Hadoop ecosystem. Users can add support to ingest data from any source and disperse to any sink leveraging the use of Apache Spark . The name, Marmaray, comes from a tunnel in Turkey connecting Europe and Asia. Similarly, we envisioned Marmaray within Uber as a pipeline connecting data from any source to any sink depending on customer preference:
https://eng.uber.com/marmaray-hadoop-ingestion-open-source/
(Direct GitHub repo: https://github.com/uber/marmaray Kafka Kafka Manager )
- Real Time Aggregations15
- Batch and Real-Time Ingestion6
- OLAP5
- OLAP + OLTP3
- Combining stream and historical analytics2
- OLTP1
- Limited sql support3
- Joins are not supported well2
- Complexity1
related Druid posts
My background is in Data analytics in the telecom domain. Have to build the database for analyzing large volumes of CDR data so far the data are maintained in a file server and the application queries data from the files. It's consuming a lot of resources queries are taking time so now I am asked to come up with the approach. I planned to rewrite the app, so which database needs to be used. I am confused between MongoDB and Druid.
So please do advise me on picking from these two and why?
My process is like this: I would get data once a month, either from Google BigQuery or as parquet files from Azure Blob Storage. I have a script that does some cleaning and then stores the result as partitioned parquet files because the following process cannot handle loading all data to memory.
The next process is making a heavy computation in a parallel fashion (per partition), and storing 3 intermediate versions as parquet files: two used for statistics, and the third will be filtered and create the final files.
I make a report based on the two files in Jupyter notebook and convert it to HTML.
- Everything is done with vanilla python and Pandas.
- sometimes I may get a different format of data
- cloud service is Microsoft Azure.
What I'm considering is the following:
Get the data with Kafka or with native python, do the first processing, and store data in Druid, the second processing will be done with Apache Spark getting data from apache druid.
the intermediate states can be stored in druid too. and visualization would be with apache superset.
- High performance18
- Flexible data model, easy scalability, extremely fast18
- Mobile app support9
- You can query it with Ansi-92 SQL7
- All nodes can be read/write6
- Equal nodes in cluster, allowing fast, flexible changes5
- Both a key-value store and document (JSON) db5
- Open source, community and enterprise editions5
- Automatic configuration of sharding4
- Local cache capability4
- Easy setup3
- Linearly scalable, useful to large number of tps3
- Easy cluster administration3
- Cross data center replication3
- SDKs in popular programming languages3
- Elasticsearch connector3
- Web based management, query and monitoring panel3
- Map reduce views2
- DBaaS available2
- NoSQL2
- Buckets, Scopes, Collections & Documents1
- FTS + SQL together1
- Terrible query language3
related Couchbase posts
We implemented our first large scale EPR application from naologic.com using CouchDB .
Very fast, replication works great, doesn't consume much RAM, queries are blazing fast but we found a problem: the queries were very hard to write, it took a long time to figure out the API, we had to go and write our own @nodejs library to make it work properly.
It lost most of its support. Since then, we migrated to Couchbase and the learning curve was steep but all worth it. Memcached indexing out of the box, full text search works great.
Hey, we want to build a referral campaign mechanism that will probably contain millions of records within the next few years. We want fast read access based on IDs or some indexes, and isolation is crucial as some listeners will try to update the same document at the same time. What's your suggestion between Couchbase and MongoDB? Thanks!
Apache Hive
related Apache Hive posts
To provide employees with the critical need of interactive querying, we’ve worked with Presto, an open-source distributed SQL query engine, over the years. Operating Presto at Pinterest’s scale has involved resolving quite a few challenges like, supporting deeply nested and huge thrift schemas, slow/ bad worker detection and remediation, auto-scaling cluster, graceful cluster shutdown and impersonation support for ldap authenticator.
Our infrastructure is built on top of Amazon EC2 and we leverage Amazon S3 for storing our data. This separates compute and storage layers, and allows multiple compute clusters to share the S3 data.
We have hundreds of petabytes of data and tens of thousands of Apache Hive tables. Our Presto clusters are comprised of a fleet of 450 r4.8xl EC2 instances. Presto clusters together have over 100 TBs of memory and 14K vcpu cores. Within Pinterest, we have close to more than 1,000 monthly active users (out of total 1,600+ Pinterest employees) using Presto, who run about 400K queries on these clusters per month.
Each query submitted to Presto cluster is logged to a Kafka topic via Singer. Singer is a logging agent built at Pinterest and we talked about it in a previous post. Each query is logged when it is submitted and when it finishes. When a Presto cluster crashes, we will have query submitted events without corresponding query finished events. These events enable us to capture the effect of cluster crashes over time.
Each Presto cluster at Pinterest has workers on a mix of dedicated AWS EC2 instances and Kubernetes pods. Kubernetes platform provides us with the capability to add and remove workers from a Presto cluster very quickly. The best-case latency on bringing up a new worker on Kubernetes is less than a minute. However, when the Kubernetes cluster itself is out of resources and needs to scale up, it can take up to ten minutes. Some other advantages of deploying on Kubernetes platform is that our Presto deployment becomes agnostic of cloud vendor, instance types, OS, etc.
#BigData #AWS #DataScience #DataEngineering
From my point of view, both OpenRefine and Apache Hive serve completely different purposes. OpenRefine is intended for interactive cleaning of messy data locally. You could work with their libraries to use some of OpenRefine features as part of your data pipeline (there are pointers in FAQ), but OpenRefine in general is intended for a single-user local operation.
I can't recommend a particular alternative without better understanding of your use case. But if you are looking for an interactive tool to work with big data at scale, take a look at notebook environments like Jupyter, Databricks, or Deepnote. If you are building a data processing pipeline, consider also Apache Spark.
Edit: Fixed references from Hadoop to Hive, which is actually closer to Spark.
RocksDB
- Very fast5
- Made by Facebook3
- Consistent performance2
- Ability to add logic to the database layer where needed1
related RocksDB posts
1.0 of Stream leveraged Cassandra for storing the feed. Cassandra is a common choice for building feeds. Instagram, for instance started, out with Redis but eventually switched to Cassandra to handle their rapid usage growth. Cassandra can handle write heavy workloads very efficiently.
Cassandra is a great tool that allows you to scale write capacity simply by adding more nodes, though it is also very complex. This complexity made it hard to diagnose performance fluctuations. Even though we had years of experience with running Cassandra, it still felt like a bit of a black box. When building Stream 2.0 we decided to go for a different approach and build Keevo. Keevo is our in-house key-value store built upon RocksDB, gRPC and Raft.
RocksDB is a highly performant embeddable database library developed and maintained by Facebook’s data engineering team. RocksDB started as a fork of Google’s LevelDB that introduced several performance improvements for SSD. Nowadays RocksDB is a project on its own and is under active development. It is written in C++ and it’s fast. Have a look at how this benchmark handles 7 million QPS. In terms of technology it’s much more simple than Cassandra.
This translates into reduced maintenance overhead, improved performance and, most importantly, more consistent performance. It’s interesting to note that LinkedIn also uses RocksDB for their feed.
#InMemoryDatabases #DataStores #Databases
I am researching different querying solutions to handle ~1 trillion records of data (in the realm of a petabyte). The data is mostly textual. I have identified a few options: Milvus, HBase, RocksDB, and Elasticsearch. I was wondering if there is a good way to compare the performance of these options (or if anyone has already done something like this). I want to be able to compare the speed of ingesting and querying textual data from these tools. Does anyone have information on this or know where I can find some? Thanks in advance!