Alternatives to HBase logo

Alternatives to HBase

Cassandra, MongoDB, Hadoop, Druid, and Couchbase are the most popular alternatives and competitors to HBase.
266
279
+ 1
13

What is HBase and what are its top alternatives?

Apache HBase is an open-source, distributed, versioned, column-oriented store modeled after Google' Bigtable: A Distributed Storage System for Structured Data by Chang et al. Just as Bigtable leverages the distributed data storage provided by the Google File System, HBase provides Bigtable-like capabilities on top of Apache Hadoop.
HBase is a tool in the Databases category of a tech stack.
HBase is an open source tool with 3.5K GitHub stars and 2.4K GitHub forks. Here’s a link to HBase's open source repository on GitHub

Top Alternatives of HBase

HBase alternatives & related posts

Cassandra logo

Cassandra

2.8K
2.5K
459
2.8K
2.5K
+ 1
459
A partitioned row store. Rows are organized into tables with a required primary key.
Cassandra logo
Cassandra
VS
HBase logo
HBase

related Cassandra posts

Thierry Schellenbach
Thierry Schellenbach
Shared insights
on
RedisRedisCassandraCassandraRocksDBRocksDB
at

1.0 of Stream leveraged Cassandra for storing the feed. Cassandra is a common choice for building feeds. Instagram, for instance started, out with Redis but eventually switched to Cassandra to handle their rapid usage growth. Cassandra can handle write heavy workloads very efficiently.

Cassandra is a great tool that allows you to scale write capacity simply by adding more nodes, though it is also very complex. This complexity made it hard to diagnose performance fluctuations. Even though we had years of experience with running Cassandra, it still felt like a bit of a black box. When building Stream 2.0 we decided to go for a different approach and build Keevo. Keevo is our in-house key-value store built upon RocksDB, gRPC and Raft.

RocksDB is a highly performant embeddable database library developed and maintained by Facebook’s data engineering team. RocksDB started as a fork of Google’s LevelDB that introduced several performance improvements for SSD. Nowadays RocksDB is a project on its own and is under active development. It is written in C++ and it’s fast. Have a look at how this benchmark handles 7 million QPS. In terms of technology it’s much more simple than Cassandra.

This translates into reduced maintenance overhead, improved performance and, most importantly, more consistent performance. It’s interesting to note that LinkedIn also uses RocksDB for their feed.

#InMemoryDatabases #DataStores #Databases

See more

React AngularJS jQuery

Laravel Zend Framework

MySQL MongoDB Cassandra

Docker

Linux

See more
MongoDB logo

MongoDB

33K
28.5K
3.9K
33K
28.5K
+ 1
3.9K
The database for giant ideas
MongoDB logo
MongoDB
VS
HBase logo
HBase

related MongoDB posts

Jeyabalaji Subramanian
Jeyabalaji Subramanian
CTO at FundsCorner · | 25 upvotes · 1.1M views

Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.

We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient

Based on the above criteria, we selected the following tools to perform the end to end data replication:

We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.

We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.

In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.

Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.

In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!

See more
Robert Zuber
Robert Zuber

We use MongoDB as our primary #datastore. Mongo's approach to replica sets enables some fantastic patterns for operations like maintenance, backups, and #ETL.

As we pull #microservices from our #monolith, we are taking the opportunity to build them with their own datastores using PostgreSQL. We also use Redis to cache data we’d never store permanently, and to rate-limit our requests to partners’ APIs (like GitHub).

When we’re dealing with large blobs of immutable data (logs, artifacts, and test results), we store them in Amazon S3. We handle any side-effects of S3’s eventual consistency model within our own code. This ensures that we deal with user requests correctly while writes are in process.

See more
Hadoop logo

Hadoop

1.6K
1.5K
53
1.6K
1.5K
+ 1
53
Open-source software for reliable, scalable, distributed computing
Hadoop logo
Hadoop
VS
HBase logo
HBase

related Hadoop posts

Conor Myhrvold
Conor Myhrvold
Tech Brand Mgr, Office of CTO at Uber · | 7 upvotes · 537.9K views

Why we built Marmaray, an open source generic data ingestion and dispersal framework and library for Apache Hadoop :

Built and designed by our Hadoop Platform team, Marmaray is a plug-in-based framework built on top of the Hadoop ecosystem. Users can add support to ingest data from any source and disperse to any sink leveraging the use of Apache Spark . The name, Marmaray, comes from a tunnel in Turkey connecting Europe and Asia. Similarly, we envisioned Marmaray within Uber as a pipeline connecting data from any source to any sink depending on customer preference:

https://eng.uber.com/marmaray-hadoop-ingestion-open-source/

(Direct GitHub repo: https://github.com/uber/marmaray Kafka Kafka Manager )

See more

The early data ingestion pipeline at Pinterest used Kafka as the central message transporter, with the app servers writing messages directly to Kafka, which then uploaded log files to S3.

For databases, a custom Hadoop streamer pulled database data and wrote it to S3.

Challenges cited for this infrastructure included high operational overhead, as well as potential data loss occurring when Kafka broker outages led to an overflow of in-memory message buffering.

See more
Druid logo

Druid

193
372
20
193
372
+ 1
20
Fast column-oriented distributed data store
Druid logo
Druid
VS
HBase logo
HBase

related Couchbase posts

Gabriel Pa
Gabriel Pa
CEO at NaoLogic Inc · | 7 upvotes · 188K views

We implemented our first large scale EPR application from naologic.com using CouchDB .

Very fast, replication works great, doesn't consume much RAM, queries are blazing fast but we found a problem: the queries were very hard to write, it took a long time to figure out the API, we had to go and write our own @nodejs library to make it work properly.

It lost most of its support. Since then, we migrated to Couchbase and the learning curve was steep but all worth it. Memcached indexing out of the box, full text search works great.

See more
Gabriel Pa
Gabriel Pa
CEO at NaoLogic Inc · | 2 upvotes · 180.7K views

If you want to use Pouchdb might as well use RxDB which is an observables wrapper for Pouch but much more comfortable to use. Realm is awesome but Pouchdb and RxDB give you more control. You can use Couchbase (recommended) or CouchDB to enable 2-way sync

See more
Apache Hive logo

Apache Hive

211
191
0
211
191
+ 1
0
Data Warehouse Software for Reading, Writing, and Managing Large Datasets
    Be the first to leave a pro
    Apache Hive logo
    Apache Hive
    VS
    HBase logo
    HBase

    related Apache Hive posts

    Ashish Singh
    Ashish Singh
    Tech Lead, Big Data Platform at Pinterest · | 28 upvotes · 343.8K views

    To provide employees with the critical need of interactive querying, we’ve worked with Presto, an open-source distributed SQL query engine, over the years. Operating Presto at Pinterest’s scale has involved resolving quite a few challenges like, supporting deeply nested and huge thrift schemas, slow/ bad worker detection and remediation, auto-scaling cluster, graceful cluster shutdown and impersonation support for ldap authenticator.

    Our infrastructure is built on top of Amazon EC2 and we leverage Amazon S3 for storing our data. This separates compute and storage layers, and allows multiple compute clusters to share the S3 data.

    We have hundreds of petabytes of data and tens of thousands of Apache Hive tables. Our Presto clusters are comprised of a fleet of 450 r4.8xl EC2 instances. Presto clusters together have over 100 TBs of memory and 14K vcpu cores. Within Pinterest, we have close to more than 1,000 monthly active users (out of total 1,600+ Pinterest employees) using Presto, who run about 400K queries on these clusters per month.

    Each query submitted to Presto cluster is logged to a Kafka topic via Singer. Singer is a logging agent built at Pinterest and we talked about it in a previous post. Each query is logged when it is submitted and when it finishes. When a Presto cluster crashes, we will have query submitted events without corresponding query finished events. These events enable us to capture the effect of cluster crashes over time.

    Each Presto cluster at Pinterest has workers on a mix of dedicated AWS EC2 instances and Kubernetes pods. Kubernetes platform provides us with the capability to add and remove workers from a Presto cluster very quickly. The best-case latency on bringing up a new worker on Kubernetes is less than a minute. However, when the Kubernetes cluster itself is out of resources and needs to scale up, it can take up to ten minutes. Some other advantages of deploying on Kubernetes platform is that our Presto deployment becomes agnostic of cloud vendor, instance types, OS, etc.

    #BigData #AWS #DataScience #DataEngineering

    See more
    RocksDB logo

    RocksDB

    58
    113
    10
    58
    113
    + 1
    10
    Embeddable persistent key-value store for fast storage, developed and maintained by Facebook Database Engineering Team
    RocksDB logo
    RocksDB
    VS
    HBase logo
    HBase

    related RocksDB posts

    Thierry Schellenbach
    Thierry Schellenbach
    Shared insights
    on
    RedisRedisCassandraCassandraRocksDBRocksDB
    at

    1.0 of Stream leveraged Cassandra for storing the feed. Cassandra is a common choice for building feeds. Instagram, for instance started, out with Redis but eventually switched to Cassandra to handle their rapid usage growth. Cassandra can handle write heavy workloads very efficiently.

    Cassandra is a great tool that allows you to scale write capacity simply by adding more nodes, though it is also very complex. This complexity made it hard to diagnose performance fluctuations. Even though we had years of experience with running Cassandra, it still felt like a bit of a black box. When building Stream 2.0 we decided to go for a different approach and build Keevo. Keevo is our in-house key-value store built upon RocksDB, gRPC and Raft.

    RocksDB is a highly performant embeddable database library developed and maintained by Facebook’s data engineering team. RocksDB started as a fork of Google’s LevelDB that introduced several performance improvements for SSD. Nowadays RocksDB is a project on its own and is under active development. It is written in C++ and it’s fast. Have a look at how this benchmark handles 7 million QPS. In terms of technology it’s much more simple than Cassandra.

    This translates into reduced maintenance overhead, improved performance and, most importantly, more consistent performance. It’s interesting to note that LinkedIn also uses RocksDB for their feed.

    #InMemoryDatabases #DataStores #Databases

    See more
    Redis logo

    Redis

    24.8K
    18.9K
    3.8K
    24.8K
    18.9K
    + 1
    3.8K
    An in-memory database that persists on disk
    Redis logo
    Redis
    VS
    HBase logo
    HBase

    related Redis posts

    Robert Zuber
    Robert Zuber

    We use MongoDB as our primary #datastore. Mongo's approach to replica sets enables some fantastic patterns for operations like maintenance, backups, and #ETL.

    As we pull #microservices from our #monolith, we are taking the opportunity to build them with their own datastores using PostgreSQL. We also use Redis to cache data we’d never store permanently, and to rate-limit our requests to partners’ APIs (like GitHub).

    When we’re dealing with large blobs of immutable data (logs, artifacts, and test results), we store them in Amazon S3. We handle any side-effects of S3’s eventual consistency model within our own code. This ensures that we deal with user requests correctly while writes are in process.

    See more

    I'm working as one of the engineering leads in RunaHR. As our platform is a Saas, we thought It'd be good to have an API (We chose Ruby and Rails for this) and a SPA (built with React and Redux ) connected. We started the SPA with Create React App since It's pretty easy to start.

    We use Jest as the testing framework and react-testing-library to test React components. In Rails we make tests using RSpec.

    Our main database is PostgreSQL, but we also use MongoDB to store some type of data. We started to use Redis  for cache and other time sensitive operations.

    We have a couple of extra projects: One is an Employee app built with React Native and the other is an internal back office dashboard built with Next.js for the client and Python in the backend side.

    Since we have different frontend apps we have found useful to have Bit to document visual components and utils in JavaScript.

    See more