What is Julia and what are its top alternatives?
Top Alternatives to Julia
- Python
Python is a general purpose programming language created by Guido Van Rossum. Python is most praised for its elegant syntax and readable code, if you are just beginning your programming career python suits you best. ...
- R Language
R provides a wide variety of statistical (linear and nonlinear modelling, classical statistical tests, time-series analysis, classification, clustering, ...) and graphical techniques, and is highly extensible. ...
- MATLAB
Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. ...
- Rust
Rust is a systems programming language that combines strong compile-time correctness guarantees with fast performance. It improves upon the ideas of other systems languages like C++ by providing guaranteed memory safety (no crashes, no data races) and complete control over the lifecycle of memory. ...
- Golang
Go is expressive, concise, clean, and efficient. Its concurrency mechanisms make it easy to write programs that get the most out of multicore and networked machines, while its novel type system enables flexible and modular program construction. Go compiles quickly to machine code yet has the convenience of garbage collection and the power of run-time reflection. It's a fast, statically typed, compiled language that feels like a dynamically typed, interpreted language. ...
- NumPy
Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases. ...
- Git
Git is a free and open source distributed version control system designed to handle everything from small to very large projects with speed and efficiency. ...
- GitHub
GitHub is the best place to share code with friends, co-workers, classmates, and complete strangers. Over three million people use GitHub to build amazing things together. ...
Julia alternatives & related posts
Python
- Great libraries1.2K
- Readable code965
- Beautiful code848
- Rapid development789
- Large community692
- Open source439
- Elegant394
- Great community283
- Object oriented274
- Dynamic typing222
- Great standard library78
- Very fast62
- Functional programming56
- Easy to learn52
- Scientific computing47
- Great documentation36
- Productivity30
- Matlab alternative29
- Easy to read29
- Simple is better than complex25
- It's the way I think21
- Imperative20
- Very programmer and non-programmer friendly19
- Free19
- Powerfull language17
- Machine learning support17
- Fast and simple16
- Scripting14
- Explicit is better than implicit12
- Ease of development11
- Clear and easy and powerfull10
- Unlimited power9
- It's lean and fun to code8
- Import antigravity8
- Print "life is short, use python"7
- Python has great libraries for data processing7
- Although practicality beats purity6
- Fast coding and good for competitions6
- There should be one-- and preferably only one --obvious6
- High Documented language6
- Readability counts6
- Rapid Prototyping6
- I love snakes6
- Now is better than never6
- Flat is better than nested6
- Great for tooling6
- Great for analytics5
- Web scraping5
- Lists, tuples, dictionaries5
- Complex is better than complicated4
- Socially engaged community4
- Plotting4
- Beautiful is better than ugly4
- Easy to learn and use4
- Easy to setup and run smooth4
- Simple and easy to learn4
- Multiple Inheritence4
- CG industry needs4
- List comprehensions3
- Powerful language for AI3
- Flexible and easy3
- It is Very easy , simple and will you be love programmi3
- Many types of collections3
- If the implementation is easy to explain, it may be a g3
- If the implementation is hard to explain, it's a bad id3
- Special cases aren't special enough to break the rules3
- Pip install everything3
- No cruft3
- Generators3
- Import this3
- Can understand easily who are new to programming2
- Securit2
- Should START with this but not STICK with This2
- A-to-Z2
- Because of Netflix2
- Only one way to do it2
- Better outcome2
- Good for hacking2
- Batteries included2
- Procedural programming2
- Sexy af1
- Automation friendly1
- Slow1
- Best friend for NLP1
- Powerful0
- Keep it simple0
- Ni0
- Still divided between python 2 and python 353
- Performance impact28
- Poor syntax for anonymous functions26
- GIL22
- Package management is a mess19
- Too imperative-oriented14
- Hard to understand12
- Dynamic typing12
- Very slow12
- Indentations matter a lot8
- Not everything is expression8
- Incredibly slow7
- Explicit self parameter in methods7
- Requires C functions for dynamic modules6
- Poor DSL capabilities6
- No anonymous functions6
- Fake object-oriented programming5
- Threading5
- The "lisp style" whitespaces5
- Official documentation is unclear.5
- Hard to obfuscate5
- Circular import5
- Lack of Syntax Sugar leads to "the pyramid of doom"4
- The benevolent-dictator-for-life quit4
- Not suitable for autocomplete4
- Meta classes2
- Training wheels (forced indentation)1
related Python posts
How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:
Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.
Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:
https://eng.uber.com/distributed-tracing/
(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)
Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark
Hi, I have an LMS application, currently developed in Python-Django.
It works all very well, students can view their classes and submit exams, but I have noticed that some students are sharing exam answers with other students and let's say they already have a model of the exams.
I want with the help of artificial intelligence, the exams to have different questions and in a different order for each student, what technology should I learn to develop something like this? I am a Python-Django developer but my focus is on web development, I have never touched anything from A.I.
What do you think about TensorFlow?
Please, I would appreciate all your ideas and opinions, thank you very much in advance.
- Data analysis86
- Graphics and data visualization64
- Free55
- Great community45
- Flexible statistical analysis toolkit38
- Access to powerful, cutting-edge analytics27
- Easy packages setup27
- Interactive18
- R Studio IDE13
- Hacky9
- Shiny apps7
- Shiny interactive plots6
- Preferred Medium6
- Automated data reports5
- Cutting-edge machine learning straight from researchers4
- Machine Learning3
- Graphical visualization2
- Flexible Syntax1
- Specially made for statistics1
- Domain knowledge out of the box1
- Very messy syntax6
- Tables must fit in RAM4
- Arrays indices start with 13
- Messy syntax for string concatenation2
- No push command for vectors/lists2
- Messy character encoding1
- Poor syntax for classes0
- Messy syntax for array/vector combination0
related R Language posts
The algorithms and data infrastructure at Stitch Fix is housed in #AWS. Data acquisition is split between events flowing through Kafka, and periodic snapshots of PostgreSQL DBs. We store data in an Amazon S3 based data warehouse. Apache Spark on Yarn is our tool of choice for data movement and #ETL. Because our storage layer (s3) is decoupled from our processing layer, we are able to scale our compute environment very elastically. We have several semi-permanent, autoscaling Yarn clusters running to serve our data processing needs. While the bulk of our compute infrastructure is dedicated to algorithmic processing, we also implemented Presto for adhoc queries and dashboards.
Beyond data movement and ETL, most #ML centric jobs (e.g. model training and execution) run in a similarly elastic environment as containers running Python and R code on Amazon EC2 Container Service clusters. The execution of batch jobs on top of ECS is managed by Flotilla, a service we built in house and open sourced (see https://github.com/stitchfix/flotilla-os).
At Stitch Fix, algorithmic integrations are pervasive across the business. We have dozens of data products actively integrated systems. That requires serving layer that is robust, agile, flexible, and allows for self-service. Models produced on Flotilla are packaged for deployment in production using Khan, another framework we've developed internally. Khan provides our data scientists the ability to quickly productionize those models they've developed with open source frameworks in Python 3 (e.g. PyTorch, sklearn), by automatically packaging them as Docker containers and deploying to Amazon ECS. This provides our data scientist a one-click method of getting from their algorithms to production. We then integrate those deployments into a service mesh, which allows us to A/B test various implementations in our product.
For more info:
- Our Algorithms Tour: https://algorithms-tour.stitchfix.com/
- Our blog: https://multithreaded.stitchfix.com/blog/
- Careers: https://multithreaded.stitchfix.com/careers/
#DataScience #DataStack #Data
I am currently trying to learn R Language for machine learning, I already have a good knowledge of Python. What resources would you recommend to learn from as a beginner in R?
MATLAB
- Simulink20
- Model based software development5
- Functions, statements, plots, directory navigation easy5
- S-Functions3
- REPL2
- Simple variabel control1
- Solve invertible matrix1
- Parameter-value pairs syntax to pass arguments clunky2
- Doesn't allow unpacking tuples/arguments lists with *2
- Does not support named function arguments2
- Costs a lot1
related MATLAB posts
- Guaranteed memory safety146
- Fast133
- Open source89
- Minimal runtime75
- Pattern matching73
- Type inference64
- Algebraic data types57
- Concurrent57
- Efficient C bindings47
- Practical43
- Best advances in languages in 20 years37
- Safe, fast, easy + friendly community32
- Fix for C/C++30
- Stablity25
- Zero-cost abstractions24
- Closures23
- Extensive compiler checks20
- Great community20
- Async/await18
- No NULL type18
- Completely cross platform: Windows, Linux, Android15
- No Garbage Collection15
- Great documentations14
- High-performance14
- Generics12
- Super fast12
- High performance12
- Safety no runtime crashes11
- Fearless concurrency11
- Compiler can generate Webassembly11
- Macros11
- Guaranteed thread data race safety11
- Helpful compiler10
- RLS provides great IDE support9
- Prevents data races9
- Easy Deployment9
- Real multithreading8
- Painless dependency management8
- Good package management7
- Support on Other Languages5
- Type System1
- Hard to learn28
- Ownership learning curve24
- Unfriendly, verbose syntax12
- High size of builded executable4
- Many type operations make it difficult to follow4
- No jobs4
- Variable shadowing4
- Use it only for timeoass not in production1
related Rust posts
Hello!
I'm a developer for over 9 years, and most of this time I've been working with C# and it is paying my bills until nowadays. But I'm seeking to learn other languages and expand the possibilities for the next years.
Now the question... I know Ruby is far from dead but is it still worth investing time in learning it? Or would be better to take Python, Golang, or even Rust? Or maybe another language.
Thanks in advance.
Sentry's event processing pipeline, which is responsible for handling all of the ingested event data that makes it through to our offline task processing, is written primarily in Python.
For particularly intense code paths, like our source map processing pipeline, we have begun re-writing those bits in Rust. Rust’s lack of garbage collection makes it a particularly convenient language for embedding in Python. It allows us to easily build a Python extension where all memory is managed from the Python side (if the Python wrapper gets collected by the Python GC we clean up the Rust object as well).
Golang
- High-performance556
- Simple, minimal syntax397
- Fun to write364
- Easy concurrency support via goroutines303
- Fast compilation times273
- Goroutines195
- Statically linked binaries that are simple to deploy181
- Simple compile build/run procedures151
- Great community137
- Backed by google137
- Garbage collection built-in54
- Built-in Testing47
- Excellent tools - gofmt, godoc etc44
- Elegant and concise like Python, fast like C40
- Awesome to Develop37
- Flexible interface system26
- Used for Docker26
- Great concurrency pattern25
- Deploy as executable24
- Open-source Integration21
- Easy to read19
- Go is God17
- Fun to write and so many feature out of the box17
- Powerful and simple14
- Easy to deploy14
- Concurrency14
- Its Simple and Heavy duty14
- Best language for concurrency13
- Rich standard library11
- Safe GOTOs11
- High performance10
- Clean code, high performance10
- Easy setup10
- Simplicity, Concurrency, Performance9
- Single binary avoids library dependency issues8
- Cross compiling8
- Hassle free deployment8
- Gofmt7
- Simple, powerful, and great performance7
- Used by Giants of the industry7
- Garbage Collection6
- Very sophisticated syntax5
- Excellent tooling5
- WYSIWYG5
- Keep it simple and stupid4
- Widely used4
- Kubernetes written on Go4
- No generics2
- Looks not fancy, but promoting pragmatic idioms1
- Operator goto1
- You waste time in plumbing code catching errors42
- Verbose25
- Packages and their path dependencies are braindead23
- Google's documentations aren't beginer friendly16
- Dependency management when working on multiple projects15
- Automatic garbage collection overheads10
- Uncommon syntax8
- Type system is lacking (no generics, etc)7
- Collection framework is lacking (list, set, map)5
- Best programming language3
- A failed experiment to combine c and python1
related Golang posts
How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:
Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.
Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:
https://eng.uber.com/distributed-tracing/
(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)
Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark
Winds 2.0 is an open source Podcast/RSS reader developed by Stream with a core goal to enable a wide range of developers to contribute.
We chose JavaScript because nearly every developer knows or can, at the very least, read JavaScript. With ES6 and Node.js v10.x.x, it’s become a very capable language. Async/Await is powerful and easy to use (Async/Await vs Promises). Babel allows us to experiment with next-generation JavaScript (features that are not in the official JavaScript spec yet). Yarn allows us to consistently install packages quickly (and is filled with tons of new tricks)
We’re using JavaScript for everything – both front and backend. Most of our team is experienced with Go and Python, so Node was not an obvious choice for this app.
Sure... there will be haters who refuse to acknowledge that there is anything remotely positive about JavaScript (there are even rants on Hacker News about Node.js); however, without writing completely in JavaScript, we would not have seen the results we did.
#FrameworksFullStack #Languages
- Great for data analysis10
- Faster than list4
related NumPy posts
Server side
We decided to use Python for our backend because it is one of the industry standard languages for data analysis and machine learning. It also has a lot of support due to its large user base.
Web Server: We chose Flask because we want to keep our machine learning / data analysis and the web server in the same language. Flask is easy to use and we all have experience with it. Postman will be used for creating and testing APIs due to its convenience.
Machine Learning: We decided to go with PyTorch for machine learning since it is one of the most popular libraries. It is also known to have an easier learning curve than other popular libraries such as Tensorflow. This is important because our team lacks ML experience and learning the tool as fast as possible would increase productivity.
Data Analysis: Some common Python libraries will be used to analyze our data. These include NumPy, Pandas , and matplotlib. These tools combined will help us learn the properties and characteristics of our data. Jupyter notebook will be used to help organize the data analysis process, and improve the code readability.
Client side
UI: We decided to use React for the UI because it helps organize the data and variables of the application into components, making it very convenient to maintain our dashboard. Since React is one of the most popular front end frameworks right now, there will be a lot of support for it as well as a lot of potential new hires that are familiar with the framework. CSS 3 and HTML5 will be used for the basic styling and structure of the web app, as they are the most widely used front end languages.
State Management: We decided to use Redux to manage the state of the application since it works naturally to React. Our team also already has experience working with Redux which gave it a slight edge over the other state management libraries.
Data Visualization: We decided to use the React-based library Victory to visualize the data. They have very user friendly documentation on their official website which we find easy to learn from.
Cache
- Caching: We decided between Redis and memcached because they are two of the most popular open-source cache engines. We ultimately decided to use Redis to improve our web app performance mainly due to the extra functionalities it provides such as fine-tuning cache contents and durability.
Database
- Database: We decided to use a NoSQL database over a relational database because of its flexibility from not having a predefined schema. The user behavior analytics has to be flexible since the data we plan to store may change frequently. We decided on MongoDB because it is lightweight and we can easily host the database with MongoDB Atlas . Everyone on our team also has experience working with MongoDB.
Infrastructure
- Deployment: We decided to use Heroku over AWS, Azure, Google Cloud because it is free. Although there are advantages to the other cloud services, Heroku makes the most sense to our team because our primary goal is to build an MVP.
Other Tools
Communication Slack will be used as the primary source of communication. It provides all the features needed for basic discussions. In terms of more interactive meetings, Zoom will be used for its video calls and screen sharing capabilities.
Source Control The project will be stored on GitHub and all code changes will be done though pull requests. This will help us keep the codebase clean and make it easy to revert changes when we need to.
Should I continue learning Django or take this Spring opportunity? I have been coding in python for about 2 years. I am currently learning Django and I am enjoying it. I also have some knowledge of data science libraries (Pandas, NumPy, scikit-learn, PyTorch). I am currently enhancing my web development and software engineering skills and may shift later into data science since I came from a medical background. The issue is that I am offered now a very trustworthy 9 months program teaching Java/Spring. The graduates of this program work directly in well know tech companies. Although I have been planning to continue with my Python, the other opportunity makes me hesitant since it will put me to work in a specific roadmap with deadlines and mentors. I also found on glassdoor that Spring jobs are way more than Django. Should I apply for this program or continue my journey?
- Distributed version control system1.4K
- Efficient branching and merging1.1K
- Fast959
- Open source845
- Better than svn726
- Great command-line application368
- Simple306
- Free291
- Easy to use232
- Does not require server222
- Distributed28
- Small & Fast23
- Feature based workflow18
- Staging Area15
- Most wide-spread VSC13
- Disposable Experimentation11
- Role-based codelines11
- Frictionless Context Switching7
- Data Assurance6
- Efficient5
- Just awesome4
- Easy branching and merging3
- Github integration3
- Compatible2
- Possible to lose history and commits2
- Flexible2
- Team Integration1
- Easy1
- Light1
- Fast, scalable, distributed revision control system1
- Rebase supported natively; reflog; access to plumbing1
- Flexible, easy, Safe, and fast1
- CLI is great, but the GUI tools are awesome1
- It's what you do1
- Phinx0
- Hard to learn16
- Inconsistent command line interface11
- Easy to lose uncommitted work9
- Worst documentation ever possibly made8
- Awful merge handling5
- Unexistent preventive security flows3
- Rebase hell3
- Ironically even die-hard supporters screw up badly2
- When --force is disabled, cannot rebase2
- Doesn't scale for big data1
related Git posts
Our whole DevOps stack consists of the following tools:
- GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
- Respectively Git as revision control system
- SourceTree as Git GUI
- Visual Studio Code as IDE
- CircleCI for continuous integration (automatize development process)
- Prettier / TSLint / ESLint as code linter
- SonarQube as quality gate
- Docker as container management (incl. Docker Compose for multi-container application management)
- VirtualBox for operating system simulation tests
- Kubernetes as cluster management for docker containers
- Heroku for deploying in test environments
- nginx as web server (preferably used as facade server in production environment)
- SSLMate (using OpenSSL) for certificate management
- Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
- PostgreSQL as preferred database system
- Redis as preferred in-memory database/store (great for caching)
The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:
- Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
- Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
- Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
- Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
- Scalability: All-in-one framework for distributed systems.
- Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).
It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up
or vagrant reload
we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.
I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up
, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.
We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.
If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.
The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).
Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.
GitHub
- Open source friendly1.8K
- Easy source control1.5K
- Nice UI1.3K
- Great for team collaboration1.1K
- Easy setup868
- Issue tracker504
- Great community488
- Remote team collaboration483
- Great way to share449
- Pull request and features planning442
- Just works147
- Integrated in many tools132
- Free Public Repos122
- Github Gists116
- Github pages114
- Easy to find repos83
- Open source62
- Easy to find projects60
- It's free60
- Network effect56
- Extensive API49
- Organizations43
- Branching42
- Developer Profiles34
- Git Powered Wikis32
- Great for collaboration30
- It's fun24
- Clean interface and good integrations23
- Community SDK involvement22
- Learn from others source code20
- Because: Git16
- It integrates directly with Azure14
- Standard in Open Source collab10
- Newsfeed10
- Fast8
- Beautiful user experience8
- It integrates directly with Hipchat8
- Easy to discover new code libraries7
- It's awesome6
- Smooth integration6
- Cloud SCM6
- Nice API6
- Graphs6
- Integrations6
- Hands down best online Git service available5
- Reliable5
- Quick Onboarding5
- CI Integration5
- Remarkable uptime5
- Security options4
- Loved by developers4
- Uses GIT4
- Free HTML hosting4
- Easy to use and collaborate with others4
- Version Control4
- Simple but powerful4
- Unlimited Public Repos at no cost4
- Nice to use3
- IAM3
- Ci3
- Easy deployment via SSH3
- Free private repos2
- Good tools support2
- All in one development service2
- Never dethroned2
- Easy source control and everything is backed up2
- Issues tracker2
- Self Hosted2
- IAM integration2
- Very Easy to Use2
- Easy to use2
- Leads the copycats2
- Free HTML hostings2
- Easy and efficient maintainance of the projects2
- Beautiful2
- Dasf1
- Profound1
- Owned by micrcosoft56
- Expensive for lone developers that want private repos38
- Relatively slow product/feature release cadence15
- API scoping could be better10
- Only 3 collaborators for private repos9
- Limited featureset for issue management4
- Does not have a graph for showing history like git lens3
- GitHub Packages does not support SNAPSHOT versions2
- Expensive1
- No multilingual interface1
- Horrible review comments tracking (absence)1
- Takes a long time to commit1
related GitHub posts
I was building a personal project that I needed to store items in a real time database. I am more comfortable with my Frontend skills than my backend so I didn't want to spend time building out anything in Ruby or Go.
I stumbled on Firebase by #Google, and it was really all I needed. It had realtime data, an area for storing file uploads and best of all for the amount of data I needed it was free!
I built out my application using tools I was familiar with, React for the framework, Redux.js to manage my state across components, and styled-components for the styling.
Now as this was a project I was just working on in my free time for fun I didn't really want to pay for hosting. I did some research and I found Netlify. I had actually seen them at #ReactRally the year before and deployed a Gatsby site to Netlify already.
Netlify was very easy to setup and link to my GitHub account you select a repo and pretty much with very little configuration you have a live site that will deploy every time you push to master.
With the selection of these tools I was able to build out my application, connect it to a realtime database, and deploy to a live environment all with $0 spent.
If you're looking to build out a small app I suggest giving these tools a go as you can get your idea out into the real world for absolutely no cost.





Context: I wanted to create an end to end IoT data pipeline simulation in Google Cloud IoT Core and other GCP services. I never touched Terraform meaningfully until working on this project, and it's one of the best explorations in my development career. The documentation and syntax is incredibly human-readable and friendly. I'm used to building infrastructure through the google apis via Python , but I'm so glad past Sung did not make that decision. I was tempted to use Google Cloud Deployment Manager, but the templates were a bit convoluted by first impression. I'm glad past Sung did not make this decision either.
Solution: Leveraging Google Cloud Build Google Cloud Run Google Cloud Bigtable Google BigQuery Google Cloud Storage Google Compute Engine along with some other fun tools, I can deploy over 40 GCP resources using Terraform!
Check Out My Architecture: CLICK ME
Check out the GitHub repo attached