Julia Alternatives logo

Julia Alternatives

Explore the pros & cons of Julia and its alternatives. Learn about popular competitors like Python, R Language, and MATLAB
638
677
+ 1
171

What is Julia and what are its top alternatives?

Julia is a high-level, high-performance dynamic programming language for technical computing, with syntax that is familiar to users of other technical computing environments. It provides a sophisticated compiler, distributed parallel execution, numerical accuracy, and an extensive mathematical function library.
Julia is a tool in the Package Managers category of a tech stack.
Julia is an open source tool with 47.6K GitHub stars and 5.6K GitHub forks. Here’s a link to Julia's open source repository on GitHub

Top Alternatives to Julia

  • Python
    Python

    Python is a general purpose programming language created by Guido Van Rossum. Python is most praised for its elegant syntax and readable code, if you are just beginning your programming career python suits you best. ...

  • R Language
    R Language

    R provides a wide variety of statistical (linear and nonlinear modelling, classical statistical tests, time-series analysis, classification, clustering, ...) and graphical techniques, and is highly extensible. ...

  • MATLAB
    MATLAB

    Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. ...

  • Rust
    Rust

    Rust is a systems programming language that combines strong compile-time correctness guarantees with fast performance. It improves upon the ideas of other systems languages like C++ by providing guaranteed memory safety (no crashes, no data races) and complete control over the lifecycle of memory. ...

  • Golang
    Golang

    Go is expressive, concise, clean, and efficient. Its concurrency mechanisms make it easy to write programs that get the most out of multicore and networked machines, while its novel type system enables flexible and modular program construction. Go compiles quickly to machine code yet has the convenience of garbage collection and the power of run-time reflection. It's a fast, statically typed, compiled language that feels like a dynamically typed, interpreted language. ...

  • NumPy
    NumPy

    Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases. ...

  • Git
    Git

    Git is a free and open source distributed version control system designed to handle everything from small to very large projects with speed and efficiency. ...

  • GitHub
    GitHub

    GitHub is the best place to share code with friends, co-workers, classmates, and complete strangers. Over three million people use GitHub to build amazing things together. ...

Julia alternatives & related posts

Python logo

Python

250K
6.9K
A clear and powerful object-oriented programming language, comparable to Perl, Ruby, Scheme, or Java.
250K
6.9K
PROS OF PYTHON
  • 1.2K
    Great libraries
  • 965
    Readable code
  • 848
    Beautiful code
  • 789
    Rapid development
  • 692
    Large community
  • 439
    Open source
  • 394
    Elegant
  • 283
    Great community
  • 274
    Object oriented
  • 222
    Dynamic typing
  • 78
    Great standard library
  • 62
    Very fast
  • 56
    Functional programming
  • 52
    Easy to learn
  • 47
    Scientific computing
  • 36
    Great documentation
  • 30
    Productivity
  • 29
    Matlab alternative
  • 29
    Easy to read
  • 25
    Simple is better than complex
  • 21
    It's the way I think
  • 20
    Imperative
  • 19
    Very programmer and non-programmer friendly
  • 19
    Free
  • 17
    Powerfull language
  • 17
    Machine learning support
  • 16
    Fast and simple
  • 14
    Scripting
  • 12
    Explicit is better than implicit
  • 11
    Ease of development
  • 10
    Clear and easy and powerfull
  • 9
    Unlimited power
  • 8
    It's lean and fun to code
  • 8
    Import antigravity
  • 7
    Print "life is short, use python"
  • 7
    Python has great libraries for data processing
  • 6
    Although practicality beats purity
  • 6
    Fast coding and good for competitions
  • 6
    There should be one-- and preferably only one --obvious
  • 6
    High Documented language
  • 6
    Readability counts
  • 6
    Rapid Prototyping
  • 6
    I love snakes
  • 6
    Now is better than never
  • 6
    Flat is better than nested
  • 6
    Great for tooling
  • 5
    Great for analytics
  • 5
    Web scraping
  • 5
    Lists, tuples, dictionaries
  • 4
    Complex is better than complicated
  • 4
    Socially engaged community
  • 4
    Plotting
  • 4
    Beautiful is better than ugly
  • 4
    Easy to learn and use
  • 4
    Easy to setup and run smooth
  • 4
    Simple and easy to learn
  • 4
    Multiple Inheritence
  • 4
    CG industry needs
  • 3
    List comprehensions
  • 3
    Powerful language for AI
  • 3
    Flexible and easy
  • 3
    It is Very easy , simple and will you be love programmi
  • 3
    Many types of collections
  • 3
    If the implementation is easy to explain, it may be a g
  • 3
    If the implementation is hard to explain, it's a bad id
  • 3
    Special cases aren't special enough to break the rules
  • 3
    Pip install everything
  • 3
    No cruft
  • 3
    Generators
  • 3
    Import this
  • 2
    Can understand easily who are new to programming
  • 2
    Securit
  • 2
    Should START with this but not STICK with This
  • 2
    A-to-Z
  • 2
    Because of Netflix
  • 2
    Only one way to do it
  • 2
    Better outcome
  • 2
    Good for hacking
  • 2
    Batteries included
  • 2
    Procedural programming
  • 1
    Sexy af
  • 1
    Automation friendly
  • 1
    Slow
  • 1
    Best friend for NLP
  • 0
    Powerful
  • 0
    Keep it simple
  • 0
    Ni
CONS OF PYTHON
  • 53
    Still divided between python 2 and python 3
  • 28
    Performance impact
  • 26
    Poor syntax for anonymous functions
  • 22
    GIL
  • 19
    Package management is a mess
  • 14
    Too imperative-oriented
  • 12
    Hard to understand
  • 12
    Dynamic typing
  • 12
    Very slow
  • 8
    Indentations matter a lot
  • 8
    Not everything is expression
  • 7
    Incredibly slow
  • 7
    Explicit self parameter in methods
  • 6
    Requires C functions for dynamic modules
  • 6
    Poor DSL capabilities
  • 6
    No anonymous functions
  • 5
    Fake object-oriented programming
  • 5
    Threading
  • 5
    The "lisp style" whitespaces
  • 5
    Official documentation is unclear.
  • 5
    Hard to obfuscate
  • 5
    Circular import
  • 4
    Lack of Syntax Sugar leads to "the pyramid of doom"
  • 4
    The benevolent-dictator-for-life quit
  • 4
    Not suitable for autocomplete
  • 2
    Meta classes
  • 1
    Training wheels (forced indentation)

related Python posts

Conor Myhrvold
Tech Brand Mgr, Office of CTO at Uber · | 44 upvotes · 13.3M views

How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:

Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.

Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:

https://eng.uber.com/distributed-tracing/

(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)

Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark

See more
Shared insights
on
TensorFlowTensorFlowDjangoDjangoPythonPython

Hi, I have an LMS application, currently developed in Python-Django.

It works all very well, students can view their classes and submit exams, but I have noticed that some students are sharing exam answers with other students and let's say they already have a model of the exams.

I want with the help of artificial intelligence, the exams to have different questions and in a different order for each student, what technology should I learn to develop something like this? I am a Python-Django developer but my focus is on web development, I have never touched anything from A.I.

What do you think about TensorFlow?

Please, I would appreciate all your ideas and opinions, thank you very much in advance.

See more
R Language logo

R Language

3.2K
418
A language and environment for statistical computing and graphics
3.2K
418
PROS OF R LANGUAGE
  • 86
    Data analysis
  • 64
    Graphics and data visualization
  • 55
    Free
  • 45
    Great community
  • 38
    Flexible statistical analysis toolkit
  • 27
    Access to powerful, cutting-edge analytics
  • 27
    Easy packages setup
  • 18
    Interactive
  • 13
    R Studio IDE
  • 9
    Hacky
  • 7
    Shiny apps
  • 6
    Shiny interactive plots
  • 6
    Preferred Medium
  • 5
    Automated data reports
  • 4
    Cutting-edge machine learning straight from researchers
  • 3
    Machine Learning
  • 2
    Graphical visualization
  • 1
    Flexible Syntax
  • 1
    Specially made for statistics
  • 1
    Domain knowledge out of the box
CONS OF R LANGUAGE
  • 6
    Very messy syntax
  • 4
    Tables must fit in RAM
  • 3
    Arrays indices start with 1
  • 2
    Messy syntax for string concatenation
  • 2
    No push command for vectors/lists
  • 1
    Messy character encoding
  • 0
    Poor syntax for classes
  • 0
    Messy syntax for array/vector combination

related R Language posts

Eric Colson
Chief Algorithms Officer at Stitch Fix · | 21 upvotes · 6.2M views

The algorithms and data infrastructure at Stitch Fix is housed in #AWS. Data acquisition is split between events flowing through Kafka, and periodic snapshots of PostgreSQL DBs. We store data in an Amazon S3 based data warehouse. Apache Spark on Yarn is our tool of choice for data movement and #ETL. Because our storage layer (s3) is decoupled from our processing layer, we are able to scale our compute environment very elastically. We have several semi-permanent, autoscaling Yarn clusters running to serve our data processing needs. While the bulk of our compute infrastructure is dedicated to algorithmic processing, we also implemented Presto for adhoc queries and dashboards.

Beyond data movement and ETL, most #ML centric jobs (e.g. model training and execution) run in a similarly elastic environment as containers running Python and R code on Amazon EC2 Container Service clusters. The execution of batch jobs on top of ECS is managed by Flotilla, a service we built in house and open sourced (see https://github.com/stitchfix/flotilla-os).

At Stitch Fix, algorithmic integrations are pervasive across the business. We have dozens of data products actively integrated systems. That requires serving layer that is robust, agile, flexible, and allows for self-service. Models produced on Flotilla are packaged for deployment in production using Khan, another framework we've developed internally. Khan provides our data scientists the ability to quickly productionize those models they've developed with open source frameworks in Python 3 (e.g. PyTorch, sklearn), by automatically packaging them as Docker containers and deploying to Amazon ECS. This provides our data scientist a one-click method of getting from their algorithms to production. We then integrate those deployments into a service mesh, which allows us to A/B test various implementations in our product.

For more info:

#DataScience #DataStack #Data

See more
Maged Maged Rafaat Kamal
Shared insights
on
PythonPythonR LanguageR Language

I am currently trying to learn R Language for machine learning, I already have a good knowledge of Python. What resources would you recommend to learn from as a beginner in R?

See more
MATLAB logo

MATLAB

1.1K
37
A high-level language and interactive environment for numerical computation, visualization, and programming
1.1K
37
PROS OF MATLAB
  • 20
    Simulink
  • 5
    Model based software development
  • 5
    Functions, statements, plots, directory navigation easy
  • 3
    S-Functions
  • 2
    REPL
  • 1
    Simple variabel control
  • 1
    Solve invertible matrix
CONS OF MATLAB
  • 2
    Parameter-value pairs syntax to pass arguments clunky
  • 2
    Doesn't allow unpacking tuples/arguments lists with *
  • 2
    Does not support named function arguments
  • 1
    Costs a lot

related MATLAB posts

Rust logo

Rust

5.9K
1.2K
A safe, concurrent, practical language
5.9K
1.2K
PROS OF RUST
  • 146
    Guaranteed memory safety
  • 133
    Fast
  • 89
    Open source
  • 75
    Minimal runtime
  • 73
    Pattern matching
  • 64
    Type inference
  • 57
    Algebraic data types
  • 57
    Concurrent
  • 47
    Efficient C bindings
  • 43
    Practical
  • 37
    Best advances in languages in 20 years
  • 32
    Safe, fast, easy + friendly community
  • 30
    Fix for C/C++
  • 25
    Stablity
  • 24
    Zero-cost abstractions
  • 23
    Closures
  • 20
    Extensive compiler checks
  • 20
    Great community
  • 18
    Async/await
  • 18
    No NULL type
  • 15
    Completely cross platform: Windows, Linux, Android
  • 15
    No Garbage Collection
  • 14
    Great documentations
  • 14
    High-performance
  • 12
    Generics
  • 12
    Super fast
  • 12
    High performance
  • 11
    Safety no runtime crashes
  • 11
    Fearless concurrency
  • 11
    Compiler can generate Webassembly
  • 11
    Macros
  • 11
    Guaranteed thread data race safety
  • 10
    Helpful compiler
  • 9
    RLS provides great IDE support
  • 9
    Prevents data races
  • 9
    Easy Deployment
  • 8
    Real multithreading
  • 8
    Painless dependency management
  • 7
    Good package management
  • 5
    Support on Other Languages
  • 1
    Type System
CONS OF RUST
  • 28
    Hard to learn
  • 24
    Ownership learning curve
  • 12
    Unfriendly, verbose syntax
  • 4
    High size of builded executable
  • 4
    Many type operations make it difficult to follow
  • 4
    No jobs
  • 4
    Variable shadowing
  • 1
    Use it only for timeoass not in production

related Rust posts

Caue Carvalho
Shared insights
on
RustRustGolangGolangPythonPythonRubyRubyC#C#

Hello!

I'm a developer for over 9 years, and most of this time I've been working with C# and it is paying my bills until nowadays. But I'm seeking to learn other languages and expand the possibilities for the next years.

Now the question... I know Ruby is far from dead but is it still worth investing time in learning it? Or would be better to take Python, Golang, or even Rust? Or maybe another language.

Thanks in advance.

See more
James Cunningham
Operations Engineer at Sentry · | 18 upvotes · 328.1K views
Shared insights
on
PythonPythonRustRust
at

Sentry's event processing pipeline, which is responsible for handling all of the ingested event data that makes it through to our offline task processing, is written primarily in Python.

For particularly intense code paths, like our source map processing pipeline, we have begun re-writing those bits in Rust. Rust’s lack of garbage collection makes it a particularly convenient language for embedding in Python. It allows us to easily build a Python extension where all memory is managed from the Python side (if the Python wrapper gets collected by the Python GC we clean up the Rust object as well).

See more
Golang logo

Golang

22.6K
3.3K
An open source programming language that makes it easy to build simple, reliable, and efficient software
22.6K
3.3K
PROS OF GOLANG
  • 556
    High-performance
  • 397
    Simple, minimal syntax
  • 364
    Fun to write
  • 303
    Easy concurrency support via goroutines
  • 273
    Fast compilation times
  • 195
    Goroutines
  • 181
    Statically linked binaries that are simple to deploy
  • 151
    Simple compile build/run procedures
  • 137
    Great community
  • 137
    Backed by google
  • 54
    Garbage collection built-in
  • 47
    Built-in Testing
  • 44
    Excellent tools - gofmt, godoc etc
  • 40
    Elegant and concise like Python, fast like C
  • 37
    Awesome to Develop
  • 26
    Flexible interface system
  • 26
    Used for Docker
  • 25
    Great concurrency pattern
  • 24
    Deploy as executable
  • 21
    Open-source Integration
  • 19
    Easy to read
  • 17
    Go is God
  • 17
    Fun to write and so many feature out of the box
  • 14
    Powerful and simple
  • 14
    Easy to deploy
  • 14
    Concurrency
  • 14
    Its Simple and Heavy duty
  • 13
    Best language for concurrency
  • 11
    Rich standard library
  • 11
    Safe GOTOs
  • 10
    High performance
  • 10
    Clean code, high performance
  • 10
    Easy setup
  • 9
    Simplicity, Concurrency, Performance
  • 8
    Single binary avoids library dependency issues
  • 8
    Cross compiling
  • 8
    Hassle free deployment
  • 7
    Gofmt
  • 7
    Simple, powerful, and great performance
  • 7
    Used by Giants of the industry
  • 6
    Garbage Collection
  • 5
    Very sophisticated syntax
  • 5
    Excellent tooling
  • 5
    WYSIWYG
  • 4
    Keep it simple and stupid
  • 4
    Widely used
  • 4
    Kubernetes written on Go
  • 2
    No generics
  • 1
    Looks not fancy, but promoting pragmatic idioms
  • 1
    Operator goto
CONS OF GOLANG
  • 42
    You waste time in plumbing code catching errors
  • 25
    Verbose
  • 23
    Packages and their path dependencies are braindead
  • 16
    Google's documentations aren't beginer friendly
  • 15
    Dependency management when working on multiple projects
  • 10
    Automatic garbage collection overheads
  • 8
    Uncommon syntax
  • 7
    Type system is lacking (no generics, etc)
  • 5
    Collection framework is lacking (list, set, map)
  • 3
    Best programming language
  • 1
    A failed experiment to combine c and python

related Golang posts

Conor Myhrvold
Tech Brand Mgr, Office of CTO at Uber · | 44 upvotes · 13.3M views

How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:

Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.

Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:

https://eng.uber.com/distributed-tracing/

(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)

Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark

See more
Nick Parsons
Building cool things on the internet 🛠️ at Stream · | 35 upvotes · 4.4M views

Winds 2.0 is an open source Podcast/RSS reader developed by Stream with a core goal to enable a wide range of developers to contribute.

We chose JavaScript because nearly every developer knows or can, at the very least, read JavaScript. With ES6 and Node.js v10.x.x, it’s become a very capable language. Async/Await is powerful and easy to use (Async/Await vs Promises). Babel allows us to experiment with next-generation JavaScript (features that are not in the official JavaScript spec yet). Yarn allows us to consistently install packages quickly (and is filled with tons of new tricks)

We’re using JavaScript for everything – both front and backend. Most of our team is experienced with Go and Python, so Node was not an obvious choice for this app.

Sure... there will be haters who refuse to acknowledge that there is anything remotely positive about JavaScript (there are even rants on Hacker News about Node.js); however, without writing completely in JavaScript, we would not have seen the results we did.

#FrameworksFullStack #Languages

See more
NumPy logo

NumPy

3K
14
Fundamental package for scientific computing with Python
3K
14
PROS OF NUMPY
  • 10
    Great for data analysis
  • 4
    Faster than list
CONS OF NUMPY
    Be the first to leave a con

    related NumPy posts

    Server side

    We decided to use Python for our backend because it is one of the industry standard languages for data analysis and machine learning. It also has a lot of support due to its large user base.

    • Web Server: We chose Flask because we want to keep our machine learning / data analysis and the web server in the same language. Flask is easy to use and we all have experience with it. Postman will be used for creating and testing APIs due to its convenience.

    • Machine Learning: We decided to go with PyTorch for machine learning since it is one of the most popular libraries. It is also known to have an easier learning curve than other popular libraries such as Tensorflow. This is important because our team lacks ML experience and learning the tool as fast as possible would increase productivity.

    • Data Analysis: Some common Python libraries will be used to analyze our data. These include NumPy, Pandas , and matplotlib. These tools combined will help us learn the properties and characteristics of our data. Jupyter notebook will be used to help organize the data analysis process, and improve the code readability.

    Client side

    • UI: We decided to use React for the UI because it helps organize the data and variables of the application into components, making it very convenient to maintain our dashboard. Since React is one of the most popular front end frameworks right now, there will be a lot of support for it as well as a lot of potential new hires that are familiar with the framework. CSS 3 and HTML5 will be used for the basic styling and structure of the web app, as they are the most widely used front end languages.

    • State Management: We decided to use Redux to manage the state of the application since it works naturally to React. Our team also already has experience working with Redux which gave it a slight edge over the other state management libraries.

    • Data Visualization: We decided to use the React-based library Victory to visualize the data. They have very user friendly documentation on their official website which we find easy to learn from.

    Cache

    • Caching: We decided between Redis and memcached because they are two of the most popular open-source cache engines. We ultimately decided to use Redis to improve our web app performance mainly due to the extra functionalities it provides such as fine-tuning cache contents and durability.

    Database

    • Database: We decided to use a NoSQL database over a relational database because of its flexibility from not having a predefined schema. The user behavior analytics has to be flexible since the data we plan to store may change frequently. We decided on MongoDB because it is lightweight and we can easily host the database with MongoDB Atlas . Everyone on our team also has experience working with MongoDB.

    Infrastructure

    • Deployment: We decided to use Heroku over AWS, Azure, Google Cloud because it is free. Although there are advantages to the other cloud services, Heroku makes the most sense to our team because our primary goal is to build an MVP.

    Other Tools

    • Communication Slack will be used as the primary source of communication. It provides all the features needed for basic discussions. In terms of more interactive meetings, Zoom will be used for its video calls and screen sharing capabilities.

    • Source Control The project will be stored on GitHub and all code changes will be done though pull requests. This will help us keep the codebase clean and make it easy to revert changes when we need to.

    See more

    Should I continue learning Django or take this Spring opportunity? I have been coding in python for about 2 years. I am currently learning Django and I am enjoying it. I also have some knowledge of data science libraries (Pandas, NumPy, scikit-learn, PyTorch). I am currently enhancing my web development and software engineering skills and may shift later into data science since I came from a medical background. The issue is that I am offered now a very trustworthy 9 months program teaching Java/Spring. The graduates of this program work directly in well know tech companies. Although I have been planning to continue with my Python, the other opportunity makes me hesitant since it will put me to work in a specific roadmap with deadlines and mentors. I also found on glassdoor that Spring jobs are way more than Django. Should I apply for this program or continue my journey?

    See more
    Git logo

    Git

    302.8K
    6.6K
    Fast, scalable, distributed revision control system
    302.8K
    6.6K
    PROS OF GIT
    • 1.4K
      Distributed version control system
    • 1.1K
      Efficient branching and merging
    • 959
      Fast
    • 845
      Open source
    • 726
      Better than svn
    • 368
      Great command-line application
    • 306
      Simple
    • 291
      Free
    • 232
      Easy to use
    • 222
      Does not require server
    • 28
      Distributed
    • 23
      Small & Fast
    • 18
      Feature based workflow
    • 15
      Staging Area
    • 13
      Most wide-spread VSC
    • 11
      Disposable Experimentation
    • 11
      Role-based codelines
    • 7
      Frictionless Context Switching
    • 6
      Data Assurance
    • 5
      Efficient
    • 4
      Just awesome
    • 3
      Easy branching and merging
    • 3
      Github integration
    • 2
      Compatible
    • 2
      Possible to lose history and commits
    • 2
      Flexible
    • 1
      Team Integration
    • 1
      Easy
    • 1
      Light
    • 1
      Fast, scalable, distributed revision control system
    • 1
      Rebase supported natively; reflog; access to plumbing
    • 1
      Flexible, easy, Safe, and fast
    • 1
      CLI is great, but the GUI tools are awesome
    • 1
      It's what you do
    • 0
      Phinx
    CONS OF GIT
    • 16
      Hard to learn
    • 11
      Inconsistent command line interface
    • 9
      Easy to lose uncommitted work
    • 8
      Worst documentation ever possibly made
    • 5
      Awful merge handling
    • 3
      Unexistent preventive security flows
    • 3
      Rebase hell
    • 2
      Ironically even die-hard supporters screw up badly
    • 2
      When --force is disabled, cannot rebase
    • 1
      Doesn't scale for big data

    related Git posts

    Simon Reymann
    Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 12.7M views

    Our whole DevOps stack consists of the following tools:

    • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
    • Respectively Git as revision control system
    • SourceTree as Git GUI
    • Visual Studio Code as IDE
    • CircleCI for continuous integration (automatize development process)
    • Prettier / TSLint / ESLint as code linter
    • SonarQube as quality gate
    • Docker as container management (incl. Docker Compose for multi-container application management)
    • VirtualBox for operating system simulation tests
    • Kubernetes as cluster management for docker containers
    • Heroku for deploying in test environments
    • nginx as web server (preferably used as facade server in production environment)
    • SSLMate (using OpenSSL) for certificate management
    • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
    • PostgreSQL as preferred database system
    • Redis as preferred in-memory database/store (great for caching)

    The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

    • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
    • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
    • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
    • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
    • Scalability: All-in-one framework for distributed systems.
    • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
    See more
    Tymoteusz Paul
    Devops guy at X20X Development LTD · | 23 upvotes · 10.6M views

    Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

    It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

    I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

    We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

    If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

    The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

    Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

    See more
    GitHub logo

    GitHub

    294.6K
    10.3K
    Powerful collaboration, review, and code management for open source and private development projects
    294.6K
    10.3K
    PROS OF GITHUB
    • 1.8K
      Open source friendly
    • 1.5K
      Easy source control
    • 1.3K
      Nice UI
    • 1.1K
      Great for team collaboration
    • 868
      Easy setup
    • 504
      Issue tracker
    • 488
      Great community
    • 483
      Remote team collaboration
    • 449
      Great way to share
    • 442
      Pull request and features planning
    • 147
      Just works
    • 132
      Integrated in many tools
    • 122
      Free Public Repos
    • 116
      Github Gists
    • 114
      Github pages
    • 83
      Easy to find repos
    • 62
      Open source
    • 60
      Easy to find projects
    • 60
      It's free
    • 56
      Network effect
    • 49
      Extensive API
    • 43
      Organizations
    • 42
      Branching
    • 34
      Developer Profiles
    • 32
      Git Powered Wikis
    • 30
      Great for collaboration
    • 24
      It's fun
    • 23
      Clean interface and good integrations
    • 22
      Community SDK involvement
    • 20
      Learn from others source code
    • 16
      Because: Git
    • 14
      It integrates directly with Azure
    • 10
      Standard in Open Source collab
    • 10
      Newsfeed
    • 8
      Fast
    • 8
      Beautiful user experience
    • 8
      It integrates directly with Hipchat
    • 7
      Easy to discover new code libraries
    • 6
      It's awesome
    • 6
      Smooth integration
    • 6
      Cloud SCM
    • 6
      Nice API
    • 6
      Graphs
    • 6
      Integrations
    • 5
      Hands down best online Git service available
    • 5
      Reliable
    • 5
      Quick Onboarding
    • 5
      CI Integration
    • 5
      Remarkable uptime
    • 4
      Security options
    • 4
      Loved by developers
    • 4
      Uses GIT
    • 4
      Free HTML hosting
    • 4
      Easy to use and collaborate with others
    • 4
      Version Control
    • 4
      Simple but powerful
    • 4
      Unlimited Public Repos at no cost
    • 3
      Nice to use
    • 3
      IAM
    • 3
      Ci
    • 3
      Easy deployment via SSH
    • 2
      Free private repos
    • 2
      Good tools support
    • 2
      All in one development service
    • 2
      Never dethroned
    • 2
      Easy source control and everything is backed up
    • 2
      Issues tracker
    • 2
      Self Hosted
    • 2
      IAM integration
    • 2
      Very Easy to Use
    • 2
      Easy to use
    • 2
      Leads the copycats
    • 2
      Free HTML hostings
    • 2
      Easy and efficient maintainance of the projects
    • 2
      Beautiful
    • 1
      Dasf
    • 1
      Profound
    CONS OF GITHUB
    • 56
      Owned by micrcosoft
    • 38
      Expensive for lone developers that want private repos
    • 15
      Relatively slow product/feature release cadence
    • 10
      API scoping could be better
    • 9
      Only 3 collaborators for private repos
    • 4
      Limited featureset for issue management
    • 3
      Does not have a graph for showing history like git lens
    • 2
      GitHub Packages does not support SNAPSHOT versions
    • 1
      Expensive
    • 1
      No multilingual interface
    • 1
      Horrible review comments tracking (absence)
    • 1
      Takes a long time to commit

    related GitHub posts

    Johnny Bell

    I was building a personal project that I needed to store items in a real time database. I am more comfortable with my Frontend skills than my backend so I didn't want to spend time building out anything in Ruby or Go.

    I stumbled on Firebase by #Google, and it was really all I needed. It had realtime data, an area for storing file uploads and best of all for the amount of data I needed it was free!

    I built out my application using tools I was familiar with, React for the framework, Redux.js to manage my state across components, and styled-components for the styling.

    Now as this was a project I was just working on in my free time for fun I didn't really want to pay for hosting. I did some research and I found Netlify. I had actually seen them at #ReactRally the year before and deployed a Gatsby site to Netlify already.

    Netlify was very easy to setup and link to my GitHub account you select a repo and pretty much with very little configuration you have a live site that will deploy every time you push to master.

    With the selection of these tools I was able to build out my application, connect it to a realtime database, and deploy to a live environment all with $0 spent.

    If you're looking to build out a small app I suggest giving these tools a go as you can get your idea out into the real world for absolutely no cost.

    See more

    Context: I wanted to create an end to end IoT data pipeline simulation in Google Cloud IoT Core and other GCP services. I never touched Terraform meaningfully until working on this project, and it's one of the best explorations in my development career. The documentation and syntax is incredibly human-readable and friendly. I'm used to building infrastructure through the google apis via Python , but I'm so glad past Sung did not make that decision. I was tempted to use Google Cloud Deployment Manager, but the templates were a bit convoluted by first impression. I'm glad past Sung did not make this decision either.

    Solution: Leveraging Google Cloud Build Google Cloud Run Google Cloud Bigtable Google BigQuery Google Cloud Storage Google Compute Engine along with some other fun tools, I can deploy over 40 GCP resources using Terraform!

    Check Out My Architecture: CLICK ME

    Check out the GitHub repo attached

    See more