Alternatives to PipelineDB logo

Alternatives to PipelineDB

TimescaleDB, Apache Spark, RethinkDB, InfluxDB, and Kafka are the most popular alternatives and competitors to PipelineDB.
8
0

What is PipelineDB and what are its top alternatives?

PipelineDB is an open-source relational database that runs SQL queries continuously on streams, incrementally storing results in tables.
PipelineDB is a tool in the Databases category of a tech stack.

Top Alternatives to PipelineDB

  • TimescaleDB
    TimescaleDB

    TimescaleDB: An open-source database built for analyzing time-series data with the power and convenience of SQL — on premise, at the edge, or in the cloud. ...

  • Apache Spark
    Apache Spark

    Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning. ...

  • RethinkDB
    RethinkDB

    RethinkDB is built to store JSON documents, and scale to multiple machines with very little effort. It has a pleasant query language that supports really useful queries like table joins and group by, and is easy to setup and learn. ...

  • InfluxDB
    InfluxDB

    InfluxDB is a scalable datastore for metrics, events, and real-time analytics. It has a built-in HTTP API so you don't have to write any server side code to get up and running. InfluxDB is designed to be scalable, simple to install and manage, and fast to get data in and out. ...

  • Kafka
    Kafka

    Kafka is a distributed, partitioned, replicated commit log service. It provides the functionality of a messaging system, but with a unique design. ...

  • KSQL
    KSQL

    KSQL is an open source streaming SQL engine for Apache Kafka. It provides a simple and completely interactive SQL interface for stream processing on Kafka; no need to write code in a programming language such as Java or Python. KSQL is open-source (Apache 2.0 licensed), distributed, scalable, reliable, and real-time. ...

  • MySQL
    MySQL

    The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software. ...

  • PostgreSQL
    PostgreSQL

    PostgreSQL is an advanced object-relational database management system that supports an extended subset of the SQL standard, including transactions, foreign keys, subqueries, triggers, user-defined types and functions. ...

PipelineDB alternatives & related posts

TimescaleDB logo

TimescaleDB

214
370
44
Scalable and reliable time-series SQL database optimized for fast ingest and complex queries. Built on PostgreSQL.
214
370
+ 1
44
PROS OF TIMESCALEDB
  • 9
    Open source
  • 8
    Easy Query Language
  • 7
    Time-series data analysis
  • 5
    Established postgresql API and support
  • 4
    Reliable
  • 2
    Paid support for automatic Retention Policy
  • 2
    Chunk-based compression
  • 2
    Postgres integration
  • 2
    High-performance
  • 2
    Fast and scalable
  • 1
    Case studies
CONS OF TIMESCALEDB
  • 5
    Licensing issues when running on managed databases

related TimescaleDB posts

John Kodumal

As we've evolved or added additional infrastructure to our stack, we've biased towards managed services. Most new backing stores are Amazon RDS instances now. We do use self-managed PostgreSQL with TimescaleDB for time-series data—this is made HA with the use of Patroni and Consul.

We also use managed Amazon ElastiCache instances instead of spinning up Amazon EC2 instances to run Redis workloads, as well as shifting to Amazon Kinesis instead of Kafka.

See more

Hi, I need advice on which Database tool to use in the following scenario:

I work with Cesium, and I need to save and load CZML snapshot and update objects for a recording program that saves files containing several entities (along with the time of the snapshot or update). I need to be able to easily load the files according to the corresponding timeline point (for example, if the update was recorded at 13:15, I should be able to easily load the update file when I click on the 13:15 point on the timeline). I should also be able to make geo-queries relatively easily.

I am currently thinking about Elasticsearch or PostgreSQL, but I am open to suggestions. I tried looking into Time Series Databases like TimescaleDB but found that it is unnecessarily powerful than my needs since the update time is a simple variable.

Thanks for your advice in advance!

See more
Apache Spark logo

Apache Spark

3K
3.5K
140
Fast and general engine for large-scale data processing
3K
3.5K
+ 1
140
PROS OF APACHE SPARK
  • 61
    Open-source
  • 48
    Fast and Flexible
  • 8
    One platform for every big data problem
  • 8
    Great for distributed SQL like applications
  • 6
    Easy to install and to use
  • 3
    Works well for most Datascience usecases
  • 2
    Interactive Query
  • 2
    Machine learning libratimery, Streaming in real
  • 2
    In memory Computation
CONS OF APACHE SPARK
  • 4
    Speed

related Apache Spark posts

Eric Colson
Chief Algorithms Officer at Stitch Fix · | 21 upvotes · 6.1M views

The algorithms and data infrastructure at Stitch Fix is housed in #AWS. Data acquisition is split between events flowing through Kafka, and periodic snapshots of PostgreSQL DBs. We store data in an Amazon S3 based data warehouse. Apache Spark on Yarn is our tool of choice for data movement and #ETL. Because our storage layer (s3) is decoupled from our processing layer, we are able to scale our compute environment very elastically. We have several semi-permanent, autoscaling Yarn clusters running to serve our data processing needs. While the bulk of our compute infrastructure is dedicated to algorithmic processing, we also implemented Presto for adhoc queries and dashboards.

Beyond data movement and ETL, most #ML centric jobs (e.g. model training and execution) run in a similarly elastic environment as containers running Python and R code on Amazon EC2 Container Service clusters. The execution of batch jobs on top of ECS is managed by Flotilla, a service we built in house and open sourced (see https://github.com/stitchfix/flotilla-os).

At Stitch Fix, algorithmic integrations are pervasive across the business. We have dozens of data products actively integrated systems. That requires serving layer that is robust, agile, flexible, and allows for self-service. Models produced on Flotilla are packaged for deployment in production using Khan, another framework we've developed internally. Khan provides our data scientists the ability to quickly productionize those models they've developed with open source frameworks in Python 3 (e.g. PyTorch, sklearn), by automatically packaging them as Docker containers and deploying to Amazon ECS. This provides our data scientist a one-click method of getting from their algorithms to production. We then integrate those deployments into a service mesh, which allows us to A/B test various implementations in our product.

For more info:

#DataScience #DataStack #Data

See more
Patrick Sun
Software Engineer at Stitch Fix · | 10 upvotes · 58.8K views

As a frontend engineer on the Algorithms & Analytics team at Stitch Fix, I work with data scientists to develop applications and visualizations to help our internal business partners make data-driven decisions. I envisioned a platform that would assist data scientists in the data exploration process, allowing them to visually explore and rapidly iterate through their assumptions, then share their insights with others. This would align with our team's philosophy of having engineers "deploy platforms, services, abstractions, and frameworks that allow the data scientists to conceive of, develop, and deploy their ideas with autonomy", and solve the pain of data exploration.

The final product, code-named Dora, is built with React, Redux.js and Victory, backed by Elasticsearch to enable fast and iterative data exploration, and uses Apache Spark to move data from our Amazon S3 data warehouse into the Elasticsearch cluster.

See more
RethinkDB logo

RethinkDB

299
405
307
JSON. Scales to multiple machines with very little effort. Open source.
299
405
+ 1
307
PROS OF RETHINKDB
  • 48
    Powerful query language
  • 46
    Excellent dashboard
  • 42
    JSON
  • 41
    Distributed database
  • 38
    Open source
  • 25
    Reactive
  • 16
    Atomic updates
  • 15
    Joins
  • 9
    MVCC concurrency
  • 9
    Hadoop-style map/reduce
  • 4
    Geospatial support
  • 4
    Real-time, open-source, scalable
  • 2
    YC Company
  • 2
    A NoSQL DB with joins
  • 2
    Great Admin UI
  • 2
    Changefeeds: no polling needed to get updates
  • 2
    Fast, easily scalable, great customer support
CONS OF RETHINKDB
    Be the first to leave a con

    related RethinkDB posts

    Łukasz Korecki
    CTO & Co-founder at EnjoyHQ · | 12 upvotes · 125.7K views

    We initially chose RethinkDB because of the schema-less document store features, and better durability resilience/story than MongoDB In the end, it didn't work out quite as we expected: there's plenty of scalability issues, it's near impossible to run analytical workloads and small community makes working with Rethink a challenge. We're in process of migrating all our workloads to PostgreSQL and hopefully, we will be able to decommission our RethinkDB deployment soon.

    See more

    Dear Team, Please advise the stack to be used for building Chat Applications that cater to billions of users and work on Mobile as well as desktop. I don't want to use Firebase since it is not fitting into my use case of not using third Party Service Provider. I am comfortable with Java/PHP as a backend. Can we consider RethinkDB, MySQL, and GunDB for the application?

    Also looking for Push methodology and not polling one for sending Realtime updates.

    Regards Sukesh

    See more
    InfluxDB logo

    InfluxDB

    1K
    1.2K
    175
    An open-source distributed time series database with no external dependencies
    1K
    1.2K
    + 1
    175
    PROS OF INFLUXDB
    • 59
      Time-series data analysis
    • 30
      Easy setup, no dependencies
    • 24
      Fast, scalable & open source
    • 21
      Open source
    • 20
      Real-time analytics
    • 6
      Continuous Query support
    • 5
      Easy Query Language
    • 4
      HTTP API
    • 4
      Out-of-the-box, automatic Retention Policy
    • 1
      Offers Enterprise version
    • 1
      Free Open Source version
    CONS OF INFLUXDB
    • 4
      Instability
    • 1
      Proprietary query language
    • 1
      HA or Clustering is only in paid version

    related InfluxDB posts

    Hi everyone. I'm trying to create my personal syslog monitoring.

    1. To get the logs, I have uncertainty to choose the way: 1.1 Use Logstash like a TCP server. 1.2 Implement a Go TCP server.

    2. To store and plot data. 2.1 Use Elasticsearch tools. 2.2 Use InfluxDB and Grafana.

    I would like to know... Which is a cheaper and scalable solution?

    Or even if there is a better way to do it.

    See more
    Kafka logo

    Kafka

    23.5K
    22K
    607
    Distributed, fault tolerant, high throughput pub-sub messaging system
    23.5K
    22K
    + 1
    607
    PROS OF KAFKA
    • 126
      High-throughput
    • 119
      Distributed
    • 92
      Scalable
    • 86
      High-Performance
    • 66
      Durable
    • 38
      Publish-Subscribe
    • 19
      Simple-to-use
    • 18
      Open source
    • 12
      Written in Scala and java. Runs on JVM
    • 9
      Message broker + Streaming system
    • 4
      KSQL
    • 4
      Avro schema integration
    • 4
      Robust
    • 3
      Suport Multiple clients
    • 2
      Extremely good parallelism constructs
    • 2
      Partioned, replayable log
    • 1
      Simple publisher / multi-subscriber model
    • 1
      Fun
    • 1
      Flexible
    CONS OF KAFKA
    • 32
      Non-Java clients are second-class citizens
    • 29
      Needs Zookeeper
    • 9
      Operational difficulties
    • 5
      Terrible Packaging

    related Kafka posts

    Nick Rockwell
    SVP, Engineering at Fastly · | 46 upvotes · 4.1M views

    When I joined NYT there was already broad dissatisfaction with the LAMP (Linux Apache HTTP Server MySQL PHP) Stack and the front end framework, in particular. So, I wasn't passing judgment on it. I mean, LAMP's fine, you can do good work in LAMP. It's a little dated at this point, but it's not ... I didn't want to rip it out for its own sake, but everyone else was like, "We don't like this, it's really inflexible." And I remember from being outside the company when that was called MIT FIVE when it had launched. And been observing it from the outside, and I was like, you guys took so long to do that and you did it so carefully, and yet you're not happy with your decisions. Why is that? That was more the impetus. If we're going to do this again, how are we going to do it in a way that we're gonna get a better result?

    So we're moving quickly away from LAMP, I would say. So, right now, the new front end is React based and using Apollo. And we've been in a long, protracted, gradual rollout of the core experiences.

    React is now talking to GraphQL as a primary API. There's a Node.js back end, to the front end, which is mainly for server-side rendering, as well.

    Behind there, the main repository for the GraphQL server is a big table repository, that we call Bodega because it's a convenience store. And that reads off of a Kafka pipeline.

    See more
    Ashish Singh
    Tech Lead, Big Data Platform at Pinterest · | 38 upvotes · 3.3M views

    To provide employees with the critical need of interactive querying, we’ve worked with Presto, an open-source distributed SQL query engine, over the years. Operating Presto at Pinterest’s scale has involved resolving quite a few challenges like, supporting deeply nested and huge thrift schemas, slow/ bad worker detection and remediation, auto-scaling cluster, graceful cluster shutdown and impersonation support for ldap authenticator.

    Our infrastructure is built on top of Amazon EC2 and we leverage Amazon S3 for storing our data. This separates compute and storage layers, and allows multiple compute clusters to share the S3 data.

    We have hundreds of petabytes of data and tens of thousands of Apache Hive tables. Our Presto clusters are comprised of a fleet of 450 r4.8xl EC2 instances. Presto clusters together have over 100 TBs of memory and 14K vcpu cores. Within Pinterest, we have close to more than 1,000 monthly active users (out of total 1,600+ Pinterest employees) using Presto, who run about 400K queries on these clusters per month.

    Each query submitted to Presto cluster is logged to a Kafka topic via Singer. Singer is a logging agent built at Pinterest and we talked about it in a previous post. Each query is logged when it is submitted and when it finishes. When a Presto cluster crashes, we will have query submitted events without corresponding query finished events. These events enable us to capture the effect of cluster crashes over time.

    Each Presto cluster at Pinterest has workers on a mix of dedicated AWS EC2 instances and Kubernetes pods. Kubernetes platform provides us with the capability to add and remove workers from a Presto cluster very quickly. The best-case latency on bringing up a new worker on Kubernetes is less than a minute. However, when the Kubernetes cluster itself is out of resources and needs to scale up, it can take up to ten minutes. Some other advantages of deploying on Kubernetes platform is that our Presto deployment becomes agnostic of cloud vendor, instance types, OS, etc.

    #BigData #AWS #DataScience #DataEngineering

    See more
    KSQL logo

    KSQL

    55
    125
    5
    Open source streaming SQL for Apache Kafka
    55
    125
    + 1
    5
    PROS OF KSQL
    • 3
      Streamprocessing on Kafka
    • 2
      SQL syntax with windowing functions over streams
    • 0
      Easy transistion for SQL Devs
    CONS OF KSQL
      Be the first to leave a con

      related KSQL posts

      I have recently started using Confluent/Kafka cloud. We want to do some stream processing. As I was going through Kafka I came across Kafka Streams and KSQL. Both seem to be A good fit for stream processing. But I could not understand which one should be used and one has any advantage over another. We will be using Confluent/Kafka Managed Cloud Instance. In near future, our Producers and Consumers are running on premise and we will be interacting with Confluent Cloud.

      Also, Confluent Cloud Kafka has a primitive interface; is there any better UI interface to manage Kafka Cloud Cluster?

      See more
      MySQL logo

      MySQL

      125.2K
      105.9K
      3.8K
      The world's most popular open source database
      125.2K
      105.9K
      + 1
      3.8K
      PROS OF MYSQL
      • 800
        Sql
      • 679
        Free
      • 562
        Easy
      • 528
        Widely used
      • 490
        Open source
      • 180
        High availability
      • 160
        Cross-platform support
      • 104
        Great community
      • 79
        Secure
      • 75
        Full-text indexing and searching
      • 26
        Fast, open, available
      • 16
        Reliable
      • 16
        SSL support
      • 15
        Robust
      • 9
        Enterprise Version
      • 7
        Easy to set up on all platforms
      • 3
        NoSQL access to JSON data type
      • 1
        Relational database
      • 1
        Easy, light, scalable
      • 1
        Sequel Pro (best SQL GUI)
      • 1
        Replica Support
      CONS OF MYSQL
      • 16
        Owned by a company with their own agenda
      • 3
        Can't roll back schema changes

      related MySQL posts

      Nick Rockwell
      SVP, Engineering at Fastly · | 46 upvotes · 4.1M views

      When I joined NYT there was already broad dissatisfaction with the LAMP (Linux Apache HTTP Server MySQL PHP) Stack and the front end framework, in particular. So, I wasn't passing judgment on it. I mean, LAMP's fine, you can do good work in LAMP. It's a little dated at this point, but it's not ... I didn't want to rip it out for its own sake, but everyone else was like, "We don't like this, it's really inflexible." And I remember from being outside the company when that was called MIT FIVE when it had launched. And been observing it from the outside, and I was like, you guys took so long to do that and you did it so carefully, and yet you're not happy with your decisions. Why is that? That was more the impetus. If we're going to do this again, how are we going to do it in a way that we're gonna get a better result?

      So we're moving quickly away from LAMP, I would say. So, right now, the new front end is React based and using Apollo. And we've been in a long, protracted, gradual rollout of the core experiences.

      React is now talking to GraphQL as a primary API. There's a Node.js back end, to the front end, which is mainly for server-side rendering, as well.

      Behind there, the main repository for the GraphQL server is a big table repository, that we call Bodega because it's a convenience store. And that reads off of a Kafka pipeline.

      See more
      Tim Abbott

      We've been using PostgreSQL since the very early days of Zulip, but we actually didn't use it from the beginning. Zulip started out as a MySQL project back in 2012, because we'd heard it was a good choice for a startup with a wide community. However, we found that even though we were using the Django ORM for most of our database access, we spent a lot of time fighting with MySQL. Issues ranged from bad collation defaults, to bad query plans which required a lot of manual query tweaks.

      We ended up getting so frustrated that we tried out PostgresQL, and the results were fantastic. We didn't have to do any real customization (just some tuning settings for how big a server we had), and all of our most important queries were faster out of the box. As a result, we were able to delete a bunch of custom queries escaping the ORM that we'd written to make the MySQL query planner happy (because postgres just did the right thing automatically).

      And then after that, we've just gotten a ton of value out of postgres. We use its excellent built-in full-text search, which has helped us avoid needing to bring in a tool like Elasticsearch, and we've really enjoyed features like its partial indexes, which saved us a lot of work adding unnecessary extra tables to get good performance for things like our "unread messages" and "starred messages" indexes.

      I can't recommend it highly enough.

      See more
      PostgreSQL logo

      PostgreSQL

      98.1K
      82.1K
      3.5K
      A powerful, open source object-relational database system
      98.1K
      82.1K
      + 1
      3.5K
      PROS OF POSTGRESQL
      • 763
        Relational database
      • 510
        High availability
      • 439
        Enterprise class database
      • 383
        Sql
      • 304
        Sql + nosql
      • 173
        Great community
      • 147
        Easy to setup
      • 131
        Heroku
      • 130
        Secure by default
      • 113
        Postgis
      • 50
        Supports Key-Value
      • 48
        Great JSON support
      • 34
        Cross platform
      • 33
        Extensible
      • 28
        Replication
      • 26
        Triggers
      • 23
        Multiversion concurrency control
      • 23
        Rollback
      • 21
        Open source
      • 18
        Heroku Add-on
      • 17
        Stable, Simple and Good Performance
      • 15
        Powerful
      • 13
        Lets be serious, what other SQL DB would you go for?
      • 11
        Good documentation
      • 9
        Scalable
      • 8
        Free
      • 8
        Reliable
      • 8
        Intelligent optimizer
      • 7
        Transactional DDL
      • 7
        Modern
      • 6
        One stop solution for all things sql no matter the os
      • 5
        Relational database with MVCC
      • 5
        Faster Development
      • 4
        Full-Text Search
      • 4
        Developer friendly
      • 3
        Excellent source code
      • 3
        Free version
      • 3
        Great DB for Transactional system or Application
      • 3
        Relational datanbase
      • 3
        search
      • 3
        Open-source
      • 2
        Text
      • 2
        Full-text
      • 1
        Can handle up to petabytes worth of size
      • 1
        Composability
      • 1
        Multiple procedural languages supported
      • 0
        Native
      CONS OF POSTGRESQL
      • 10
        Table/index bloatings

      related PostgreSQL posts

      Simon Reymann
      Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 11.1M views

      Our whole DevOps stack consists of the following tools:

      • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
      • Respectively Git as revision control system
      • SourceTree as Git GUI
      • Visual Studio Code as IDE
      • CircleCI for continuous integration (automatize development process)
      • Prettier / TSLint / ESLint as code linter
      • SonarQube as quality gate
      • Docker as container management (incl. Docker Compose for multi-container application management)
      • VirtualBox for operating system simulation tests
      • Kubernetes as cluster management for docker containers
      • Heroku for deploying in test environments
      • nginx as web server (preferably used as facade server in production environment)
      • SSLMate (using OpenSSL) for certificate management
      • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
      • PostgreSQL as preferred database system
      • Redis as preferred in-memory database/store (great for caching)

      The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

      • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
      • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
      • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
      • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
      • Scalability: All-in-one framework for distributed systems.
      • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
      See more
      Jeyabalaji Subramanian

      Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.

      We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient

      Based on the above criteria, we selected the following tools to perform the end to end data replication:

      We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.

      We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.

      In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.

      Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.

      In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!

      See more