What is SAS and what are its top alternatives?
SAS is a powerful software suite used for advanced analytics, data management, and business intelligence. It offers a wide range of statistical capabilities, data visualization tools, and machine learning algorithms. However, SAS can be complex to learn and use, and its licensing costs can be high.
- R Studio: R Studio is a popular open-source integrated development environment (IDE) for the R programming language. It offers a wide range of statistical and graphical techniques, making it a strong alternative to SAS. Pros include a large and active user community, numerous packages for data analysis, and strong data visualization capabilities. Cons include a steeper learning curve compared to SAS.
- Python with Pandas: Python with Pandas is another popular alternative to SAS for data analysis and manipulation. Pandas is a powerful data manipulation library that offers similar capabilities to SAS in terms of data cleaning, transformation, and analysis. Pros include its ease of use, flexibility, and the vast ecosystem of Python libraries available. Cons include potentially slower performance compared to SAS for certain tasks.
- SPSS: SPSS (Statistical Package for the Social Sciences) is a comprehensive statistical analysis software package developed by IBM. It offers a user-friendly interface, wide range of statistical techniques, and strong data management capabilities. Pros include its ease of use and extensive documentation. Cons include higher licensing costs compared to some other alternatives.
- KNIME: KNIME is an open-source data analytics platform that allows users to visually create data workflows, integrating various data sources and analytical tools. It offers a wide range of data processing and machine learning capabilities. Pros include its flexibility, ease of use, and scalability. Cons include a potentially steep learning curve for beginners.
- SAP Analytics Cloud: SAP Analytics Cloud is a cloud-based business intelligence and analytics platform that offers advanced analytics, data visualization, and planning capabilities. It integrates with SAP and non-SAP data sources, making it a comprehensive alternative to SAS. Pros include its integration capabilities, powerful analytics tools, and scalability. Cons include potential cost considerations for large-scale deployments.
- Alteryx: Alteryx is a self-service data analytics platform that allows users to easily prepare, blend, and analyze data from various sources. It offers a visual workflow interface, predictive analytics capabilities, and automation options. Pros include its user-friendly interface, drag-and-drop functionality, and scalability. Cons include potential licensing costs and limited advanced statistical capabilities compared to SAS.
- MATLAB: MATLAB is a programming environment for numerical computation and data visualization. It offers extensive mathematical functions, algorithms, and visualization tools, making it a strong alternative to SAS for certain scientific and engineering applications. Pros include its powerful computational capabilities and extensive documentation. Cons include potential licensing costs and limited data manipulation features compared to SAS.
- Tableau: Tableau is a powerful data visualization software that allows users to create interactive and shareable dashboards. It offers strong data visualization capabilities, making it a useful complement to SAS for data exploration and presentation. Pros include its user-friendly interface, extensive visualization options, and scalability. Cons include limited data preparation and analysis capabilities compared to SAS.
- Scala with Spark: Scala with Apache Spark is a powerful open-source distributed computing system for big data processing. It offers advanced analytics, machine learning, and data processing capabilities, making it a scalable alternative to SAS for large-scale data analysis. Pros include its speed, scalability, and support for complex data processing tasks. Cons include potential complexity and infrastructure requirements compared to SAS.
- Statistical Analysis System (SAS): SAS is a comprehensive software suite for advanced analytics, data management, and business intelligence. It offers a wide range of statistical capabilities, data visualization tools, and machine learning algorithms. Pros include its powerful analytics tools and extensive documentation. Cons include high licensing costs and potentially steep learning curve for beginners.
Top Alternatives to SAS
- Python
Python is a general purpose programming language created by Guido Van Rossum. Python is most praised for its elegant syntax and readable code, if you are just beginning your programming career python suits you best. ...
- Google Analytics
Google Analytics lets you measure your advertising ROI as well as track your Flash, video, and social networking sites and applications. ...
- Google Tag Manager
Tag Manager gives you the ability to add and update your own tags for conversion tracking, site analytics, remarketing, and more. There are nearly endless ways to track user behavior across your sites and apps, and the intuitive design lets you change tags whenever you want. ...
- Mixpanel
Mixpanel helps companies build better products through data. With our powerful, self-serve product analytics solution, teams can easily analyze how and why people engage, convert, and retain to improve their user experience. ...
- Mixpanel
Mixpanel helps companies build better products through data. With our powerful, self-serve product analytics solution, teams can easily analyze how and why people engage, convert, and retain to improve their user experience. ...
- Optimizely
Optimizely is the market leader in digital experience optimization, helping digital leaders and Fortune 100 companies alike optimize their digital products, commerce, and campaigns with a fully featured experimentation platform. ...
- Segment
Segment is a single hub for customer data. Collect your data in one place, then send it to more than 100 third-party tools, internal systems, or Amazon Redshift with the flip of a switch. ...
- Crazy Egg
Crazy Egg gives you the competitive advantage to improve your website in a heartbeat without the high costs. ...
SAS alternatives & related posts
Python
- Great libraries1.2K
- Readable code962
- Beautiful code847
- Rapid development788
- Large community690
- Open source438
- Elegant393
- Great community282
- Object oriented272
- Dynamic typing220
- Great standard library77
- Very fast60
- Functional programming55
- Easy to learn49
- Scientific computing45
- Great documentation35
- Productivity29
- Easy to read28
- Matlab alternative28
- Simple is better than complex24
- It's the way I think20
- Imperative19
- Free18
- Very programmer and non-programmer friendly18
- Powerfull language17
- Machine learning support17
- Fast and simple16
- Scripting14
- Explicit is better than implicit12
- Ease of development11
- Clear and easy and powerfull10
- Unlimited power9
- It's lean and fun to code8
- Import antigravity8
- Print "life is short, use python"7
- Python has great libraries for data processing7
- Although practicality beats purity6
- Now is better than never6
- Great for tooling6
- Readability counts6
- Rapid Prototyping6
- I love snakes6
- Flat is better than nested6
- Fast coding and good for competitions6
- There should be one-- and preferably only one --obvious6
- High Documented language6
- Great for analytics5
- Lists, tuples, dictionaries5
- Easy to learn and use4
- Simple and easy to learn4
- Easy to setup and run smooth4
- Web scraping4
- CG industry needs4
- Socially engaged community4
- Complex is better than complicated4
- Multiple Inheritence4
- Beautiful is better than ugly4
- Plotting4
- Many types of collections3
- Flexible and easy3
- It is Very easy , simple and will you be love programmi3
- If the implementation is hard to explain, it's a bad id3
- Special cases aren't special enough to break the rules3
- Pip install everything3
- List comprehensions3
- No cruft3
- Generators3
- Import this3
- If the implementation is easy to explain, it may be a g3
- Can understand easily who are new to programming2
- Batteries included2
- Securit2
- Good for hacking2
- Better outcome2
- Only one way to do it2
- Because of Netflix2
- A-to-Z2
- Should START with this but not STICK with This2
- Powerful language for AI2
- Automation friendly1
- Sexy af1
- Slow1
- Procedural programming1
- Ni0
- Powerful0
- Keep it simple0
- Still divided between python 2 and python 353
- Performance impact28
- Poor syntax for anonymous functions26
- GIL22
- Package management is a mess19
- Too imperative-oriented14
- Hard to understand12
- Dynamic typing12
- Very slow12
- Indentations matter a lot8
- Not everything is expression8
- Incredibly slow7
- Explicit self parameter in methods7
- Requires C functions for dynamic modules6
- Poor DSL capabilities6
- No anonymous functions6
- Fake object-oriented programming5
- Threading5
- The "lisp style" whitespaces5
- Official documentation is unclear.5
- Hard to obfuscate5
- Circular import5
- Lack of Syntax Sugar leads to "the pyramid of doom"4
- The benevolent-dictator-for-life quit4
- Not suitable for autocomplete4
- Meta classes2
- Training wheels (forced indentation)1
related Python posts
How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:
Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.
Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:
https://eng.uber.com/distributed-tracing/
(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)
Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark
Winds 2.0 is an open source Podcast/RSS reader developed by Stream with a core goal to enable a wide range of developers to contribute.
We chose JavaScript because nearly every developer knows or can, at the very least, read JavaScript. With ES6 and Node.js v10.x.x, it’s become a very capable language. Async/Await is powerful and easy to use (Async/Await vs Promises). Babel allows us to experiment with next-generation JavaScript (features that are not in the official JavaScript spec yet). Yarn allows us to consistently install packages quickly (and is filled with tons of new tricks)
We’re using JavaScript for everything – both front and backend. Most of our team is experienced with Go and Python, so Node was not an obvious choice for this app.
Sure... there will be haters who refuse to acknowledge that there is anything remotely positive about JavaScript (there are even rants on Hacker News about Node.js); however, without writing completely in JavaScript, we would not have seen the results we did.
#FrameworksFullStack #Languages
- Free1.5K
- Easy setup927
- Data visualization891
- Real-time stats698
- Comprehensive feature set406
- Goals tracking182
- Powerful funnel conversion reporting155
- Customizable reports139
- Custom events try83
- Elastic api53
- Updated regulary15
- Interactive Documentation8
- Google play4
- Walkman music video playlist3
- Industry Standard3
- Advanced ecommerce3
- Irina2
- Easy to integrate2
- Financial Management Challenges -2015h2
- Medium / Channel data split2
- Lifesaver2
- Confusing UX/UI11
- Super complex8
- Very hard to build out funnels6
- Poor web performance metrics4
- Very easy to confuse the user of the analytics3
- Time spent on page isn't accurate out of the box2
related Google Analytics posts
This is my stack in Application & Data
JavaScript PHP HTML5 jQuery Redis Amazon EC2 Ubuntu Sass Vue.js Firebase Laravel Lumen Amazon RDS GraphQL MariaDB
My Utilities Tools
Google Analytics Postman Elasticsearch
My Devops Tools
Git GitHub GitLab npm Visual Studio Code Kibana Sentry BrowserStack
My Business Tools
Slack
Functionally, Amplitude and Mixpanel are incredibly similar. They both offer almost all the same functionality around tracking and visualizing user actions for analytics. You can track A/B test results in both. We ended up going with Amplitude at BaseDash because it has a more generous free tier for our uses (10 million actions per month, versus Mixpanel's 1000 monthly tracked users).
Segment isn't meant to compete with these tools, but instead acts as an API to send actions to them, and other analytics tools. If you're just sending event data to one of these tools, you probably don't need Segment. If you're using other analytics tools like Google Analytics and FullStory, Segment makes it easy to send events to all your tools at once.
Google Tag Manager
related Google Tag Manager posts
Hi,
This is a question for best practice regarding Segment and Google Tag Manager. I would love to use Segment and GTM together when we need to implement a lot of additional tools, such as Amplitude, Appsfyler, or any other engagement tool since we can send event data without additional SDK implementation, etc.
So, my question is, if you use Segment and Google Tag Manager, how did you define what you will push through Segment and what will you push through Google Tag Manager? For example, when implementing a Facebook Pixel or any other 3rd party marketing tag?
From my point of view, implementing marketing pixels should stay in GTM because of the tag/trigger control.
If you are using Segment and GTM together, I would love to learn more about your best practice.
Thanks!
Mixpanel
- Great visualization ui144
- Easy integration108
- Great funnel funcionality78
- Free58
- A wide range of tools22
- Powerful Graph Search15
- Responsive Customer Support11
- Nice reporting2
- Messaging (notification, email) features are weak2
- Paid plans can get expensive2
- Limited dashboard capabilities1
related Mixpanel posts
Functionally, Amplitude and Mixpanel are incredibly similar. They both offer almost all the same functionality around tracking and visualizing user actions for analytics. You can track A/B test results in both. We ended up going with Amplitude at BaseDash because it has a more generous free tier for our uses (10 million actions per month, versus Mixpanel's 1000 monthly tracked users).
Segment isn't meant to compete with these tools, but instead acts as an API to send actions to them, and other analytics tools. If you're just sending event data to one of these tools, you probably don't need Segment. If you're using other analytics tools like Google Analytics and FullStory, Segment makes it easy to send events to all your tools at once.
Hi there, we are a seed-stage startup in the personal development space. I am looking at building the marketing stack tool to have an accurate view of the user experience from acquisition through to adoption and retention for our upcoming React Native Mobile app. We qualify for the startup program of Segment and Mixpanel, which seems like a good option to get rolling and scale for free to learn how our current 60K free members will interact in the new subscription-based platform. I was considering AppsFlyer for attribution, and I am now looking at an affordable yet scalable Mobile Marketing tool vs. building in-house. Braze looks great, so does Leanplum, but the price points are 30K to start, which we can't do. I looked at OneSignal, but it doesn't have user flow visualization. I am now looking into Urban Airship and Iterable. Any advice would be much appreciated!
Mixpanel
- Great visualization ui144
- Easy integration108
- Great funnel funcionality78
- Free58
- A wide range of tools22
- Powerful Graph Search15
- Responsive Customer Support11
- Nice reporting2
- Messaging (notification, email) features are weak2
- Paid plans can get expensive2
- Limited dashboard capabilities1
related Mixpanel posts
Functionally, Amplitude and Mixpanel are incredibly similar. They both offer almost all the same functionality around tracking and visualizing user actions for analytics. You can track A/B test results in both. We ended up going with Amplitude at BaseDash because it has a more generous free tier for our uses (10 million actions per month, versus Mixpanel's 1000 monthly tracked users).
Segment isn't meant to compete with these tools, but instead acts as an API to send actions to them, and other analytics tools. If you're just sending event data to one of these tools, you probably don't need Segment. If you're using other analytics tools like Google Analytics and FullStory, Segment makes it easy to send events to all your tools at once.
Hi there, we are a seed-stage startup in the personal development space. I am looking at building the marketing stack tool to have an accurate view of the user experience from acquisition through to adoption and retention for our upcoming React Native Mobile app. We qualify for the startup program of Segment and Mixpanel, which seems like a good option to get rolling and scale for free to learn how our current 60K free members will interact in the new subscription-based platform. I was considering AppsFlyer for attribution, and I am now looking at an affordable yet scalable Mobile Marketing tool vs. building in-house. Braze looks great, so does Leanplum, but the price points are 30K to start, which we can't do. I looked at OneSignal, but it doesn't have user flow visualization. I am now looking into Urban Airship and Iterable. Any advice would be much appreciated!
Optimizely
- Easy to setup, edit variants, & see results50
- Light weight20
- Best a/b testing solution16
- Integration with google analytics14
related Optimizely posts
Hey all, I'm managing the implementation of a customer data platform and headless CMS for a digital consumer content publisher. We're weighing up the pros and cons of implementing an OTB activation platform like Optimizely Recommendations or Dynamic Yield vs developing a bespoke solution for personalising content recommendations. Use Case is CDP will house customers and personas, and headless CMS will contain the individual content assets. The intermediary solution will activate data between the two for personalisation of news content feeds. I saw GCP has some potentially applicable personalisation solutions such as recommendations AI, which seem to be targeted at retail, but would probably be relevant to this use case for all intents and purposes. The CDP is Segment and the CMS is Contentstack. Has anyone implemented an activation platform or personalisation solution under similar circumstances? Any advice or direction would be appreciated! Thank you
Segment
- Easy to scale and maintain 3rd party services86
- One API49
- Simple39
- Multiple integrations25
- Cleanest API19
- Easy10
- Free9
- Mixpanel Integration8
- Segment SQL7
- Flexible6
- Google Analytics Integration4
- Salesforce Integration2
- SQL Access2
- Clean Integration with Application2
- Own all your tracking data1
- Quick setup1
- Clearbit integration1
- Beautiful UI1
- Integrates with Apptimize1
- Escort1
- Woopra Integration1
- Not clear which events/options are integration-specific2
- Limitations with integration-specific configurations1
- Client-side events are separated from server-side1
related Segment posts
Back in 2014, I was given an opportunity to re-architect SmartZip Analytics platform, and flagship product: SmartTargeting. This is a SaaS software helping real estate professionals keeping up with their prospects and leads in a given neighborhood/territory, finding out (thanks to predictive analytics) who's the most likely to list/sell their home, and running cross-channel marketing automation against them: direct mail, online ads, email... The company also does provide Data APIs to Enterprise customers.
I had inherited years and years of technical debt and I knew things had to change radically. The first enabler to this was to make use of the cloud and go with AWS, so we would stop re-inventing the wheel, and build around managed/scalable services.
For the SaaS product, we kept on working with Rails as this was what my team had the most knowledge in. We've however broken up the monolith and decoupled the front-end application from the backend thanks to the use of Rails API so we'd get independently scalable micro-services from now on.
Our various applications could now be deployed using AWS Elastic Beanstalk so we wouldn't waste any more efforts writing time-consuming Capistrano deployment scripts for instance. Combined with Docker so our application would run within its own container, independently from the underlying host configuration.
Storage-wise, we went with Amazon S3 and ditched any pre-existing local or network storage people used to deal with in our legacy systems. On the database side: Amazon RDS / MySQL initially. Ultimately migrated to Amazon RDS for Aurora / MySQL when it got released. Once again, here you need a managed service your cloud provider handles for you.
Future improvements / technology decisions included:
Caching: Amazon ElastiCache / Memcached CDN: Amazon CloudFront Systems Integration: Segment / Zapier Data-warehousing: Amazon Redshift BI: Amazon Quicksight / Superset Search: Elasticsearch / Amazon Elasticsearch Service / Algolia Monitoring: New Relic
As our usage grows, patterns changed, and/or our business needs evolved, my role as Engineering Manager then Director of Engineering was also to ensure my team kept on learning and innovating, while delivering on business value.
One of these innovations was to get ourselves into Serverless : Adopting AWS Lambda was a big step forward. At the time, only available for Node.js (Not Ruby ) but a great way to handle cost efficiency, unpredictable traffic, sudden bursts of traffic... Ultimately you want the whole chain of services involved in a call to be serverless, and that's when we've started leveraging Amazon DynamoDB on these projects so they'd be fully scalable.
Our primary source of monitoring and alerting is Datadog. We’ve got prebuilt dashboards for every scenario and integration with PagerDuty to manage routing any alerts. We’ve definitely scaled past the point where managing dashboards is easy, but we haven’t had time to invest in using features like Anomaly Detection. We’ve started using Honeycomb for some targeted debugging of complex production issues and we are liking what we’ve seen. We capture any unhandled exceptions with Rollbar and, if we realize one will keep happening, we quickly convert the metrics to point back to Datadog, to keep Rollbar as clean as possible.
We use Segment to consolidate all of our trackers, the most important of which goes to Amplitude to analyze user patterns. However, if we need a more consolidated view, we push all of our data to our own data warehouse running PostgreSQL; this is available for analytics and dashboard creation through Looker.
- Very easy to use12
- Great insight information9
- Neat visualizations2