Need advice about which tool to choose?Ask the StackShare community!

Alooma

24
47
+ 1
0
AWS Glue

459
816
+ 1
9
Add tool

Alooma vs AWS Glue: What are the differences?

What is Alooma? Integrate any data source like databases, applications, and any API - with your own Amazon Redshift. Get the power of big data in minutes with Alooma and Amazon Redshift. Simply build your pipelines and map your events using Alooma’s friendly mapping interface. Query, analyze, visualize, and predict now.

What is AWS Glue? Fully managed extract, transform, and load (ETL) service. A fully managed extract, transform, and load (ETL) service that makes it easy for customers to prepare and load their data for analytics.

Alooma can be classified as a tool in the "Big Data as a Service" category, while AWS Glue is grouped under "Big Data Tools".

According to the StackShare community, AWS Glue has a broader approval, being mentioned in 21 company stacks & 22 developers stacks; compared to Alooma, which is listed in 5 company stacks and 11 developer stacks.

Advice on Alooma and AWS Glue

We need to perform ETL from several databases into a data warehouse or data lake. We want to

  • keep raw and transformed data available to users to draft their own queries efficiently
  • give users the ability to give custom permissions and SSO
  • move between open-source on-premises development and cloud-based production environments

We want to use inexpensive Amazon EC2 instances only on medium-sized data set 16GB to 32GB feeding into Tableau Server or PowerBI for reporting and data analysis purposes.

See more
Replies (3)
John Nguyen
Recommends
on
AirflowAirflowAWS LambdaAWS Lambda

You could also use AWS Lambda and use Cloudwatch event schedule if you know when the function should be triggered. The benefit is that you could use any language and use the respective database client.

But if you orchestrate ETLs then it makes sense to use Apache Airflow. This requires Python knowledge.

See more
Recommends
on
AirflowAirflow

Though we have always built something custom, Apache airflow (https://airflow.apache.org/) stood out as a key contender/alternative when it comes to open sources. On the commercial offering, Amazon Redshift combined with Amazon Kinesis (for complex manipulations) is great for BI, though Redshift as such is expensive.

See more
Recommends

You may want to look into a Data Virtualization product called Conduit. It connects to disparate data sources in AWS, on prem, Azure, GCP, and exposes them as a single unified Spark SQL view to PowerBI (direct query) or Tableau. Allows auto query and caching policies to enhance query speeds and experience. Has a GPU query engine and optimized Spark for fallback. Can be deployed on your AWS VM or on prem, scales up and out. Sounds like the ideal solution to your needs.

See more
Vamshi Krishna
Data Engineer at Tata Consultancy Services · | 4 upvotes · 258.5K views

I have to collect different data from multiple sources and store them in a single cloud location. Then perform cleaning and transforming using PySpark, and push the end results to other applications like reporting tools, etc. What would be the best solution? I can only think of Azure Data Factory + Databricks. Are there any alternatives to #AWS services + Databricks?

See more

Hi all,

Currently, we need to ingest the data from Amazon S3 to DB either Amazon Athena or Amazon Redshift. But the problem with the data is, it is in .PSV (pipe separated values) format and the size is also above 200 GB. The query performance of the timeout in Athena/Redshift is not up to the mark, too slow while compared to Google BigQuery. How would I optimize the performance and query result time? Can anyone please help me out?

See more
Replies (4)

you can use aws glue service to convert you pipe format data to parquet format , and thus you can achieve data compression . Now you should choose Redshift to copy your data as it is very huge. To manage your data, you should partition your data in S3 bucket and also divide your data across the redshift cluster

See more
Carlos Acedo
Data Technologies Manager at SDG Group Iberia · | 5 upvotes · 249.5K views
Recommends
on
Amazon RedshiftAmazon Redshift

First of all you should make your choice upon Redshift or Athena based on your use case since they are two very diferent services - Redshift is an enterprise-grade MPP Data Warehouse while Athena is a SQL layer on top of S3 with limited performance. If performance is a key factor, users are going to execute unpredictable queries and direct and managing costs are not a problem I'd definitely go for Redshift. If performance is not so critical and queries will be predictable somewhat I'd go for Athena.

Once you select the technology you'll need to optimize your data in order to get the queries executed as fast as possible. In both cases you may need to adapt the data model to fit your queries better. In the case you go for Athena you'd also proabably need to change your file format to Parquet or Avro and review your partition strategy depending on your most frequent type of query. If you choose Redshift you'll need to ingest the data from your files into it and maybe carry out some tuning tasks for performance gain.

I'll recommend Redshift for now since it can address a wider range of use cases, but we could give you better advice if you described your use case in depth.

See more
Alexis Blandin
Recommends
on
Amazon AthenaAmazon Athena

It depend of the nature of your data (structured or not?) and of course your queries (ad-hoc or predictible?). For example you can look at partitioning and columnar format to maximize MPP capabilities for both Athena and Redshift

See more
Recommends

you can change your PSV fomat data to parquet file format with AWS GLUE and then your query performance will be improved

See more
Manage your open source components, licenses, and vulnerabilities
Learn More
Pros of Alooma
Pros of AWS Glue
    Be the first to leave a pro
    • 9
      Managed Hive Metastore

    Sign up to add or upvote prosMake informed product decisions

    What is Alooma?

    Get the power of big data in minutes with Alooma and Amazon Redshift. Simply build your pipelines and map your events using Alooma’s friendly mapping interface. Query, analyze, visualize, and predict now.

    What is AWS Glue?

    A fully managed extract, transform, and load (ETL) service that makes it easy for customers to prepare and load their data for analytics.

    Need advice about which tool to choose?Ask the StackShare community!

    Jobs that mention Alooma and AWS Glue as a desired skillset
    What companies use Alooma?
    What companies use AWS Glue?
    Manage your open source components, licenses, and vulnerabilities
    Learn More

    Sign up to get full access to all the companiesMake informed product decisions

    What tools integrate with Alooma?
    What tools integrate with AWS Glue?

    Sign up to get full access to all the tool integrationsMake informed product decisions

    Blog Posts

    Aug 28 2019 at 3:10AM

    Segment

    PythonJavaAmazon S3+16
    7
    2626
    What are some alternatives to Alooma and AWS Glue?
    Stitch
    Stitch is a simple, powerful ETL service built for software developers. Stitch evolved out of RJMetrics, a widely used business intelligence platform. When RJMetrics was acquired by Magento in 2016, Stitch was launched as its own company.
    Segment
    Segment is a single hub for customer data. Collect your data in one place, then send it to more than 100 third-party tools, internal systems, or Amazon Redshift with the flip of a switch.
    Datadog
    Datadog is the leading service for cloud-scale monitoring. It is used by IT, operations, and development teams who build and operate applications that run on dynamic or hybrid cloud infrastructure. Start monitoring in minutes with Datadog!
    Talend
    It is an open source software integration platform helps you in effortlessly turning data into business insights. It uses native code generation that lets you run your data pipelines seamlessly across all cloud providers and get optimized performance on all platforms.
    Kafka
    Kafka is a distributed, partitioned, replicated commit log service. It provides the functionality of a messaging system, but with a unique design.
    See all alternatives