Need advice about which tool to choose?Ask the StackShare community!

Amazon Athena

381
594
+ 1
45
Dremio

85
254
+ 1
7
Add tool

Amazon Athena vs Dremio: What are the differences?

Amazon Athena: Query S3 Using SQL. Amazon Athena is an interactive query service that makes it easy to analyze data in Amazon S3 using standard SQL. Athena is serverless, so there is no infrastructure to manage, and you pay only for the queries that you run; Dremio: Self-service data for everyone. It is a data-as-a-service platform that empowers users to discover, curate, accelerate, and share any data at any time, regardless of location, volume, or structure. Modern data is managed by a wide range of technologies, including relational databases, NoSQL datastores, file systems, Hadoop, and others.

Amazon Athena and Dremio can be categorized as "Big Data" tools.

Advice on Amazon Athena and Dremio

We need to perform ETL from several databases into a data warehouse or data lake. We want to

  • keep raw and transformed data available to users to draft their own queries efficiently
  • give users the ability to give custom permissions and SSO
  • move between open-source on-premises development and cloud-based production environments

We want to use inexpensive Amazon EC2 instances only on medium-sized data set 16GB to 32GB feeding into Tableau Server or PowerBI for reporting and data analysis purposes.

See more
Replies (3)

You could also use AWS Lambda and use Cloudwatch event schedule if you know when the function should be triggered. The benefit is that you could use any language and use the respective database client.

But if you orchestrate ETLs then it makes sense to use Apache Airflow. This requires Python knowledge.

See more
Recommends
Airflow

Though we have always built something custom, Apache airflow (https://airflow.apache.org/) stood out as a key contender/alternative when it comes to open sources. On the commercial offering, Amazon Redshift combined with Amazon Kinesis (for complex manipulations) is great for BI, though Redshift as such is expensive.

See more
Recommends

You may want to look into a Data Virtualization product called Conduit. It connects to disparate data sources in AWS, on prem, Azure, GCP, and exposes them as a single unified Spark SQL view to PowerBI (direct query) or Tableau. Allows auto query and caching policies to enhance query speeds and experience. Has a GPU query engine and optimized Spark for fallback. Can be deployed on your AWS VM or on prem, scales up and out. Sounds like the ideal solution to your needs.

See more
karunakaran karthikeyan
Needs advice
on
Talend
and
Dremio

I am trying to build a data lake by pulling data from multiple data sources ( custom-built tools, excel files, CSV files, etc) and use the data lake to generate dashboards.

My question is which is the best tool to do the following:

  1. Create pipelines to ingest the data from multiple sources into the data lake
  2. Help me in aggregating and filtering data available in the data lake.
  3. Create new reports by combining different data elements from the data lake.

I need to use only open-source tools for this activity.

I appreciate your valuable inputs and suggestions. Thanks in Advance.

See more
Replies (1)
Rod Beecham
Partnering Lead at Zetaris · | 3 upvotes · 26.4K views
Recommends
Dremio

Hi Karunakaran. I obviously have an interest here, as I work for the company, but the problem you are describing is one that Zetaris can solve. Talend is a good ETL product, and Dremio is a good data virtualization product, but the problem you are describing best fits a tool that can combine the five styles of data integration (bulk/batch data movement, data replication/data synchronization, message-oriented movement of data, data virtualization, and stream data integration). I may be wrong, but Zetaris is, to the best of my knowledge, the only product in the world that can do this. Zetaris is not a dashboarding tool - you would need to combine us with Tableau or Qlik or PowerBI (or whatever) - but Zetaris can consolidate data from any source and any location (structured, unstructured, on-prem or in the cloud) in real time to allow clients a consolidated view of whatever they want whenever they want it. Please take a look at www.zetaris.com for more information. I don't want to do a "hard sell", here, so I'll say no more! Warmest regards, Rod Beecham.

See more

Hi all,

Currently, we need to ingest the data from Amazon S3 to DB either Amazon Athena or Amazon Redshift. But the problem with the data is, it is in .PSV (pipe separated values) format and the size is also above 200 GB. The query performance of the timeout in Athena/Redshift is not up to the mark, too slow while compared to Google BigQuery. How would I optimize the performance and query result time? Can anyone please help me out?

See more
Replies (4)

you can use aws glue service to convert you pipe format data to parquet format , and thus you can achieve data compression . Now you should choose Redshift to copy your data as it is very huge. To manage your data, you should partition your data in S3 bucket and also divide your data across the redshift cluster

See more
Carlos Acedo
Data Technologies Manager at SDG Group Iberia · | 4 upvotes · 76.7K views
Recommends
Amazon Redshift

First of all you should make your choice upon Redshift or Athena based on your use case since they are two very diferent services - Redshift is an enterprise-grade MPP Data Warehouse while Athena is a SQL layer on top of S3 with limited performance. If performance is a key factor, users are going to execute unpredictable queries and direct and managing costs are not a problem I'd definitely go for Redshift. If performance is not so critical and queries will be predictable somewhat I'd go for Athena.

Once you select the technology you'll need to optimize your data in order to get the queries executed as fast as possible. In both cases you may need to adapt the data model to fit your queries better. In the case you go for Athena you'd also proabably need to change your file format to Parquet or Avro and review your partition strategy depending on your most frequent type of query. If you choose Redshift you'll need to ingest the data from your files into it and maybe carry out some tuning tasks for performance gain.

I'll recommend Redshift for now since it can address a wider range of use cases, but we could give you better advice if you described your use case in depth.

See more
Alexis Blandin
Recommends
Amazon Athena

It depend of the nature of your data (structured or not?) and of course your queries (ad-hoc or predictible?). For example you can look at partitioning and columnar format to maximize MPP capabilities for both Athena and Redshift

See more
Recommends

you can change your PSV fomat data to parquet file format with AWS GLUE and then your query performance will be improved

See more
Get Advice from developers at your company using Private StackShare. Sign up for Private StackShare.
Learn More
Pros of Amazon Athena
Pros of Dremio
  • 14
    Use SQL to analyze CSV files
  • 8
    Glue crawlers gives easy Data catalogue
  • 6
    Cheap
  • 5
    Query all my data without running servers 24x7
  • 4
    No data base servers yay
  • 3
    Easy integration with QuickSight
  • 2
    Query and analyse CSV,parquet,json files in sql
  • 2
    Also glue and athena use same data catalog
  • 1
    No configuration required
  • 0
    Ad hoc checks on data made easy
  • 3
    Nice GUI to enable more people to work with Data
  • 2
    Connect NoSQL databases with RDBMS
  • 2
    Easier to Deploy

Sign up to add or upvote prosMake informed product decisions

Sign up to add or upvote consMake informed product decisions

What is Amazon Athena?

Amazon Athena is an interactive query service that makes it easy to analyze data in Amazon S3 using standard SQL. Athena is serverless, so there is no infrastructure to manage, and you pay only for the queries that you run.

What is Dremio?

Dremio—the data lake engine, operationalizes your data lake storage and speeds your analytics processes with a high-performance and high-efficiency query engine while also democratizing data access for data scientists and analysts.

Need advice about which tool to choose?Ask the StackShare community!

What companies use Amazon Athena?
What companies use Dremio?
See which teams inside your own company are using Amazon Athena or Dremio.
Sign up for Private StackShareLearn More

Sign up to get full access to all the companiesMake informed product decisions

What tools integrate with Amazon Athena?
What tools integrate with Dremio?

Sign up to get full access to all the tool integrationsMake informed product decisions

Blog Posts

Aug 28 2019 at 3:10AM

Segment

+16
5
2109
Jul 2 2019 at 9:34PM

Segment

+25
10
5826
What are some alternatives to Amazon Athena and Dremio?
Presto
Distributed SQL Query Engine for Big Data
Amazon Redshift Spectrum
With Redshift Spectrum, you can extend the analytic power of Amazon Redshift beyond data stored on local disks in your data warehouse to query vast amounts of unstructured data in your Amazon S3 “data lake” -- without having to load or transform any data.
Amazon Redshift
It is optimized for data sets ranging from a few hundred gigabytes to a petabyte or more and costs less than $1,000 per terabyte per year, a tenth the cost of most traditional data warehousing solutions.
Cassandra
Partitioning means that Cassandra can distribute your data across multiple machines in an application-transparent matter. Cassandra will automatically repartition as machines are added and removed from the cluster. Row store means that like relational databases, Cassandra organizes data by rows and columns. The Cassandra Query Language (CQL) is a close relative of SQL.
Spectrum
The community platform for the future.
See all alternatives