Amazon RDS for Aurora vs Heroku Postgres

Get Advice Icon

Need advice about which tool to choose?Ask the StackShare community!

Amazon RDS for Aurora
Amazon RDS for Aurora

323
153
+ 1
47
Heroku Postgres
Heroku Postgres

259
149
+ 1
37
Add tool

Amazon RDS for Aurora vs Heroku Postgres: What are the differences?

Amazon RDS for Aurora: MySQL and PostgreSQL compatible relational database with several times better performance. Amazon Aurora is a MySQL-compatible, relational database engine that combines the speed and availability of high-end commercial databases with the simplicity and cost-effectiveness of open source databases. Amazon Aurora provides up to five times better performance than MySQL at a price point one tenth that of a commercial database while delivering similar performance and availability; Heroku Postgres: Heroku's Database-as-a-Service. Based on the most powerful open-source database, PostgreSQL. Heroku Postgres provides a SQL database-as-a-service that lets you focus on building your application instead of messing around with database management.

Amazon RDS for Aurora belongs to "SQL Database as a Service" category of the tech stack, while Heroku Postgres can be primarily classified under "PostgreSQL as a Service".

Some of the features offered by Amazon RDS for Aurora are:

  • High Throughput with Low Jitter
  • Push-button Compute Scaling
  • Storage Auto-scaling

On the other hand, Heroku Postgres provides the following key features:

  • High Availability
  • Rollback
  • Dataclips

"MySQL compatibility " is the top reason why over 11 developers like Amazon RDS for Aurora, while over 27 developers mention "Easy to setup" as the leading cause for choosing Heroku Postgres.

StackShare, GoGuardian, and Akoova are some of the popular companies that use Amazon RDS for Aurora, whereas Heroku Postgres is used by Open Humans, PullReview, and Churn Buster. Amazon RDS for Aurora has a broader approval, being mentioned in 116 company stacks & 30 developers stacks; compared to Heroku Postgres, which is listed in 74 company stacks and 38 developer stacks.

- No public GitHub repository available -
- No public GitHub repository available -

What is Amazon RDS for Aurora?

Amazon Aurora is a MySQL-compatible, relational database engine that combines the speed and availability of high-end commercial databases with the simplicity and cost-effectiveness of open source databases. Amazon Aurora provides up to five times better performance than MySQL at a price point one tenth that of a commercial database while delivering similar performance and availability.

What is Heroku Postgres?

Heroku Postgres provides a SQL database-as-a-service that lets you focus on building your application instead of messing around with database management.
Get Advice Icon

Need advice about which tool to choose?Ask the StackShare community!

Why do developers choose Amazon RDS for Aurora?
Why do developers choose Heroku Postgres?

Sign up to add, upvote and see more prosMake informed product decisions

What companies use Amazon RDS for Aurora?
What companies use Heroku Postgres?

Sign up to get full access to all the companiesMake informed product decisions

What tools integrate with Amazon RDS for Aurora?
What tools integrate with Heroku Postgres?

Sign up to get full access to all the tool integrationsMake informed product decisions

What are some alternatives to Amazon RDS for Aurora and Heroku Postgres?
Amazon RDS
Amazon RDS gives you access to the capabilities of a familiar MySQL, Oracle or Microsoft SQL Server database engine. This means that the code, applications, and tools you already use today with your existing databases can be used with Amazon RDS. Amazon RDS automatically patches the database software and backs up your database, storing the backups for a user-defined retention period and enabling point-in-time recovery. You benefit from the flexibility of being able to scale the compute resources or storage capacity associated with your Database Instance (DB Instance) via a single API call.
Google Cloud SQL
MySQL databases deployed in the cloud without a fuss. Google Cloud Platform provides you with powerful databases that run fast, don’t run out of space and give your application the redundant, reliable storage it needs.
ClearDB
ClearDB uses a combination of advanced replication techniques, advanced cluster technology, and layered web services to provide you with a MySQL database that is "smarter" than usual.
DigitalOcean Managed Databases
Build apps and store data in minutes with easy access to one or more databases and sleep better knowing your data is backed up and optimized.
Azure Database for MySQL
Azure Database for MySQL provides a managed database service for app development and deployment that allows you to stand up a MySQL database in minutes and scale on the fly – on the cloud you trust most.
See all alternatives
Decisions about Amazon RDS for Aurora and Heroku Postgres
Tim Specht
Tim Specht
‎Co-Founder and CTO at Dubsmash · | 13 upvotes · 57.3K views
atDubsmashDubsmash
Amazon RDS for Aurora
Amazon RDS for Aurora
Redis
Redis
Amazon DynamoDB
Amazon DynamoDB
Amazon RDS
Amazon RDS
Heroku
Heroku
PostgreSQL
PostgreSQL
#PlatformAsAService
#Databases
#NosqlDatabaseAsAService
#SqlDatabaseAsAService

Over the years we have added a wide variety of different storages to our stack including PostgreSQL (some hosted by Heroku, some by Amazon RDS) for storing relational data, Amazon DynamoDB to store non-relational data like recommendations & user connections, or Redis to hold pre-aggregated data to speed up API endpoints.

Since we started running Postgres ourselves on RDS instead of only using the managed offerings of Heroku, we've gained additional flexibility in scaling our application while reducing costs at the same time.

We are also heavily testing Amazon RDS for Aurora in its Postgres-compatible version and will also give the new release of Aurora Serverless a try!

#SqlDatabaseAsAService #NosqlDatabaseAsAService #Databases #PlatformAsAService

See more
Julien DeFrance
Julien DeFrance
Principal Software Engineer at Tophatter · | 16 upvotes · 372.5K views
atSmartZipSmartZip
Amazon DynamoDB
Amazon DynamoDB
Ruby
Ruby
Node.js
Node.js
AWS Lambda
AWS Lambda
New Relic
New Relic
Amazon Elasticsearch Service
Amazon Elasticsearch Service
Elasticsearch
Elasticsearch
Superset
Superset
Amazon Quicksight
Amazon Quicksight
Amazon Redshift
Amazon Redshift
Zapier
Zapier
Segment
Segment
Amazon CloudFront
Amazon CloudFront
Memcached
Memcached
Amazon ElastiCache
Amazon ElastiCache
Amazon RDS for Aurora
Amazon RDS for Aurora
MySQL
MySQL
Amazon RDS
Amazon RDS
Amazon S3
Amazon S3
Docker
Docker
Capistrano
Capistrano
AWS Elastic Beanstalk
AWS Elastic Beanstalk
Rails API
Rails API
Rails
Rails
Algolia
Algolia

Back in 2014, I was given an opportunity to re-architect SmartZip Analytics platform, and flagship product: SmartTargeting. This is a SaaS software helping real estate professionals keeping up with their prospects and leads in a given neighborhood/territory, finding out (thanks to predictive analytics) who's the most likely to list/sell their home, and running cross-channel marketing automation against them: direct mail, online ads, email... The company also does provide Data APIs to Enterprise customers.

I had inherited years and years of technical debt and I knew things had to change radically. The first enabler to this was to make use of the cloud and go with AWS, so we would stop re-inventing the wheel, and build around managed/scalable services.

For the SaaS product, we kept on working with Rails as this was what my team had the most knowledge in. We've however broken up the monolith and decoupled the front-end application from the backend thanks to the use of Rails API so we'd get independently scalable micro-services from now on.

Our various applications could now be deployed using AWS Elastic Beanstalk so we wouldn't waste any more efforts writing time-consuming Capistrano deployment scripts for instance. Combined with Docker so our application would run within its own container, independently from the underlying host configuration.

Storage-wise, we went with Amazon S3 and ditched any pre-existing local or network storage people used to deal with in our legacy systems. On the database side: Amazon RDS / MySQL initially. Ultimately migrated to Amazon RDS for Aurora / MySQL when it got released. Once again, here you need a managed service your cloud provider handles for you.

Future improvements / technology decisions included:

Caching: Amazon ElastiCache / Memcached CDN: Amazon CloudFront Systems Integration: Segment / Zapier Data-warehousing: Amazon Redshift BI: Amazon Quicksight / Superset Search: Elasticsearch / Amazon Elasticsearch Service / Algolia Monitoring: New Relic

As our usage grows, patterns changed, and/or our business needs evolved, my role as Engineering Manager then Director of Engineering was also to ensure my team kept on learning and innovating, while delivering on business value.

One of these innovations was to get ourselves into Serverless : Adopting AWS Lambda was a big step forward. At the time, only available for Node.js (Not Ruby ) but a great way to handle cost efficiency, unpredictable traffic, sudden bursts of traffic... Ultimately you want the whole chain of services involved in a call to be serverless, and that's when we've started leveraging Amazon DynamoDB on these projects so they'd be fully scalable.

See more
Amazon RDS
Amazon RDS
Heroku Postgres
Heroku Postgres
Amazon RDS for PostgreSQL
Amazon RDS for PostgreSQL
Amazon EBS
Amazon EBS
PostgreSQL
PostgreSQL
Amazon EC2
Amazon EC2

I could spin up an Amazon EC2 instance and install PostgreSQL myself, review latest configuration best practices, sort Amazon EBS storage for data, set up a snapshot process etc.

Alternatively I could use Amazon RDS, Amazon RDS for PostgreSQL or Heroku Postgres and have most of that work handled for me, by a team of world experts...

See more
Interest over time
Reviews of Amazon RDS for Aurora and Heroku Postgres
No reviews found
How developers use Amazon RDS for Aurora and Heroku Postgres
Avatar of PSESD
PSESD uses Heroku PostgresHeroku Postgres

Stores the admin database for the SRX apps - includes an audit log, error tracking, and SRX admin message log.

Will also store PRS rules when refactor is complete.

Avatar of Tim Lucas
Tim Lucas uses Heroku PostgresHeroku Postgres

Rock solid transactional storage of user, purchase and course activity data. During development database dumps were easy to create and download locally for testing.

Avatar of datapile
datapile uses Heroku PostgresHeroku Postgres

We use heroku PostgreSQL databases for testing alongside our sandboxed application(s) in heroku.

Extremely simple, practically a one-click setup.

Avatar of Secumail
Secumail uses Amazon RDS for AuroraAmazon RDS for Aurora

Managed MySQL clustered database so I dont have to deal with the required infrastructure

Avatar of Hunt Norment
Hunt Norment uses Heroku PostgresHeroku Postgres

4 years of experience using Heroku Postgres for data storage and management.

Avatar of Kyle Fretwell
Kyle Fretwell uses Heroku PostgresHeroku Postgres

Created several tables for users, brands, deals, campaigns, and tracking.

Avatar of RedLine13
RedLine13 uses Amazon RDS for AuroraAmazon RDS for Aurora

Core database for managing users, teams, tests, and result summaries

Avatar of Yaakov Gesher
Yaakov Gesher uses Amazon RDS for AuroraAmazon RDS for Aurora

We moved our database from compose.io to AWS for speed and price.

Avatar of Bùi Thanh
Bùi Thanh uses Amazon RDS for AuroraAmazon RDS for Aurora
  • Performance, HA and Scalable.
  • AutoScale replicas.
How much does Amazon RDS for Aurora cost?
How much does Heroku Postgres cost?
Pricing unavailable
News about Heroku Postgres
More news