Amazon Redshift Spectrum vs EventQL vs Presto

Need advice about which tool to choose?Ask the StackShare community!

Amazon Redshift Spectrum

86
121
+ 1
0
EventQL

3
9
+ 1
3
Presto

318
819
+ 1
62
Decisions about Amazon Redshift Spectrum, EventQL, and Presto
Ashish Singh
Tech Lead, Big Data Platform at Pinterest · | 36 upvotes · 813.3K views

To provide employees with the critical need of interactive querying, we’ve worked with Presto, an open-source distributed SQL query engine, over the years. Operating Presto at Pinterest’s scale has involved resolving quite a few challenges like, supporting deeply nested and huge thrift schemas, slow/ bad worker detection and remediation, auto-scaling cluster, graceful cluster shutdown and impersonation support for ldap authenticator.

Our infrastructure is built on top of Amazon EC2 and we leverage Amazon S3 for storing our data. This separates compute and storage layers, and allows multiple compute clusters to share the S3 data.

We have hundreds of petabytes of data and tens of thousands of Apache Hive tables. Our Presto clusters are comprised of a fleet of 450 r4.8xl EC2 instances. Presto clusters together have over 100 TBs of memory and 14K vcpu cores. Within Pinterest, we have close to more than 1,000 monthly active users (out of total 1,600+ Pinterest employees) using Presto, who run about 400K queries on these clusters per month.

Each query submitted to Presto cluster is logged to a Kafka topic via Singer. Singer is a logging agent built at Pinterest and we talked about it in a previous post. Each query is logged when it is submitted and when it finishes. When a Presto cluster crashes, we will have query submitted events without corresponding query finished events. These events enable us to capture the effect of cluster crashes over time.

Each Presto cluster at Pinterest has workers on a mix of dedicated AWS EC2 instances and Kubernetes pods. Kubernetes platform provides us with the capability to add and remove workers from a Presto cluster very quickly. The best-case latency on bringing up a new worker on Kubernetes is less than a minute. However, when the Kubernetes cluster itself is out of resources and needs to scale up, it can take up to ten minutes. Some other advantages of deploying on Kubernetes platform is that our Presto deployment becomes agnostic of cloud vendor, instance types, OS, etc.

#BigData #AWS #DataScience #DataEngineering

See more
Karthik Raveendran
CPO at Attinad Software · | 3 upvotes · 123.9K views

The platform deals with time series data from sensors aggregated against things( event data that originates at periodic intervals). We use Cassandra as our distributed database to store time series data. Aggregated data insights from Cassandra is delivered as web API for consumption from other applications. Presto as a distributed sql querying engine, can provide a faster execution time provided the queries are tuned for proper distribution across the cluster. Another objective that we had was to combine Cassandra table data with other business data from RDBMS or other big data systems where presto through its connector architecture would have opened up a whole lot of options for us.

See more
Get Advice from developers at your company using Private StackShare. Sign up for Private StackShare.
Learn More
Pros of Amazon Redshift Spectrum
Pros of EventQL
Pros of Presto
    Be the first to leave a pro
    • 3
      23
    • 17
      Works directly on files in s3 (no ETL)
    • 12
      Open-source
    • 11
      Join multiple databases
    • 10
      Scalable
    • 7
      Gets ready in minutes
    • 5
      MPP

    Sign up to add or upvote prosMake informed product decisions

    Sign up to add or upvote consMake informed product decisions

    - No public GitHub repository available -

    What is Amazon Redshift Spectrum?

    With Redshift Spectrum, you can extend the analytic power of Amazon Redshift beyond data stored on local disks in your data warehouse to query vast amounts of unstructured data in your Amazon S3 “data lake” -- without having to load or transform any data.

    What is EventQL?

    EventQL is a distributed, column-oriented database built for large-scale event collection and analytics. It runs super-fast SQL and MapReduce queries.

    What is Presto?

    Distributed SQL Query Engine for Big Data

    Need advice about which tool to choose?Ask the StackShare community!

    What companies use Amazon Redshift Spectrum?
    What companies use EventQL?
    What companies use Presto?
      No companies found

      Sign up to get full access to all the companiesMake informed product decisions

      What tools integrate with Amazon Redshift Spectrum?
      What tools integrate with EventQL?
      What tools integrate with Presto?
        No integrations found

        Sign up to get full access to all the tool integrationsMake informed product decisions

        What are some alternatives to Amazon Redshift Spectrum, EventQL, and Presto?
        Amazon Athena
        Amazon Athena is an interactive query service that makes it easy to analyze data in Amazon S3 using standard SQL. Athena is serverless, so there is no infrastructure to manage, and you pay only for the queries that you run.
        Amazon Redshift
        It is optimized for data sets ranging from a few hundred gigabytes to a petabyte or more and costs less than $1,000 per terabyte per year, a tenth the cost of most traditional data warehousing solutions.
        Apache Spark
        Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.
        Splunk
        It provides the leading platform for Operational Intelligence. Customers use it to search, monitor, analyze and visualize machine data.
        Apache Flink
        Apache Flink is an open source system for fast and versatile data analytics in clusters. Flink supports batch and streaming analytics, in one system. Analytical programs can be written in concise and elegant APIs in Java and Scala.
        See all alternatives