Apache Kylin vs Apache Impala vs Presto

Need advice about which tool to choose?Ask the StackShare community!

Apache Kylin

+ 1
Apache Impala

+ 1

+ 1

Apache Kylin vs Impala vs Presto: What are the differences?

<Apache Kylin vs Impala and Presto Comparison>

1. **Storage Compatibility**: Apache Kylin requires data to be stored in Apache Hadoop HDFS or cloud storage like S3, while Impala works directly with HDFS and HBase, and Presto can query data from various sources including HDFS, HBase, and relational databases.
2. **Query Performance**: Apache Kylin uses pre-built data cubes for accelerated querying, Impala offers real-time query performance due to its MPP architecture, and Presto excels in running ad-hoc queries efficiently.
3. **Data Processing Paradigm**: Apache Kylin utilizes OLAP cubes for fast query processing, Impala relies on in-memory processing for low-latency queries, and Presto follows a distributed SQL engine approach for query execution.
4. **Complex Query Support**: Apache Kylin is well-suited for complex queries requiring aggregation and filtering, Impala is suitable for interactive querying on large datasets, and Presto is ideal for complex join operations across different data sources.
5. **Ecosystem Integration**: Apache Kylin has robust integration with Hadoop ecosystem components like Hive and HBase, Impala integrates well with HDFS and HBase, and Presto can seamlessly connect with various data stores such as MySQL, Cassandra, and Kafka.
6. **Scalability and Concurrency**: Apache Kylin provides scalable querying using distributed cubes, Impala offers high concurrency with low latency due to its distributed architecture, and Presto boasts high scalability and concurrency for handling large workloads.

In Summary, Apache Kylin, Impala, and Presto differ in storage compatibility, query performance, data processing paradigm, complex query support, ecosystem integration, and scalability/concurrency features.
Decisions about Apache Kylin, Apache Impala, and Presto
Ashish Singh
Tech Lead, Big Data Platform at Pinterest · | 38 upvotes · 3M views

To provide employees with the critical need of interactive querying, we’ve worked with Presto, an open-source distributed SQL query engine, over the years. Operating Presto at Pinterest’s scale has involved resolving quite a few challenges like, supporting deeply nested and huge thrift schemas, slow/ bad worker detection and remediation, auto-scaling cluster, graceful cluster shutdown and impersonation support for ldap authenticator.

Our infrastructure is built on top of Amazon EC2 and we leverage Amazon S3 for storing our data. This separates compute and storage layers, and allows multiple compute clusters to share the S3 data.

We have hundreds of petabytes of data and tens of thousands of Apache Hive tables. Our Presto clusters are comprised of a fleet of 450 r4.8xl EC2 instances. Presto clusters together have over 100 TBs of memory and 14K vcpu cores. Within Pinterest, we have close to more than 1,000 monthly active users (out of total 1,600+ Pinterest employees) using Presto, who run about 400K queries on these clusters per month.

Each query submitted to Presto cluster is logged to a Kafka topic via Singer. Singer is a logging agent built at Pinterest and we talked about it in a previous post. Each query is logged when it is submitted and when it finishes. When a Presto cluster crashes, we will have query submitted events without corresponding query finished events. These events enable us to capture the effect of cluster crashes over time.

Each Presto cluster at Pinterest has workers on a mix of dedicated AWS EC2 instances and Kubernetes pods. Kubernetes platform provides us with the capability to add and remove workers from a Presto cluster very quickly. The best-case latency on bringing up a new worker on Kubernetes is less than a minute. However, when the Kubernetes cluster itself is out of resources and needs to scale up, it can take up to ten minutes. Some other advantages of deploying on Kubernetes platform is that our Presto deployment becomes agnostic of cloud vendor, instance types, OS, etc.

#BigData #AWS #DataScience #DataEngineering

See more
Karthik Raveendran
CPO at Attinad Software · | 3 upvotes · 211.2K views

The platform deals with time series data from sensors aggregated against things( event data that originates at periodic intervals). We use Cassandra as our distributed database to store time series data. Aggregated data insights from Cassandra is delivered as web API for consumption from other applications. Presto as a distributed sql querying engine, can provide a faster execution time provided the queries are tuned for proper distribution across the cluster. Another objective that we had was to combine Cassandra table data with other business data from RDBMS or other big data systems where presto through its connector architecture would have opened up a whole lot of options for us.

See more
Get Advice from developers at your company using StackShare Enterprise. Sign up for StackShare Enterprise.
Learn More
Pros of Apache Kylin
Pros of Apache Impala
Pros of Presto
  • 7
    Star schema and snowflake schema support
  • 5
    Seamless BI integration
  • 4
    OLAP on Hadoop
  • 3
    Easy install
  • 3
    Sub-second latency on extreme large dataset
  • 2
  • 11
    Super fast
  • 1
    Massively Parallel Processing
  • 1
    Load Balancing
  • 1
  • 1
  • 1
  • 1
    High Performance
  • 1
    Open Sourse
  • 18
    Works directly on files in s3 (no ETL)
  • 13
  • 12
    Join multiple databases
  • 10
  • 7
    Gets ready in minutes
  • 6

Sign up to add or upvote prosMake informed product decisions

- No public GitHub repository available -

What is Apache Kylin?

Apache Kylin™ is an open source Distributed Analytics Engine designed to provide SQL interface and multi-dimensional analysis (OLAP) on Hadoop/Spark supporting extremely large datasets, originally contributed from eBay Inc.

What is Apache Impala?

Impala is a modern, open source, MPP SQL query engine for Apache Hadoop. Impala is shipped by Cloudera, MapR, and Amazon. With Impala, you can query data, whether stored in HDFS or Apache HBase – including SELECT, JOIN, and aggregate functions – in real time.

What is Presto?

Distributed SQL Query Engine for Big Data

Need advice about which tool to choose?Ask the StackShare community!

What companies use Apache Kylin?
What companies use Apache Impala?
What companies use Presto?

Sign up to get full access to all the companiesMake informed product decisions

What tools integrate with Apache Kylin?
What tools integrate with Apache Impala?
What tools integrate with Presto?

Sign up to get full access to all the tool integrationsMake informed product decisions

What are some alternatives to Apache Kylin, Apache Impala, and Presto?
Apache Spark
Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.
Druid is a distributed, column-oriented, real-time analytics data store that is commonly used to power exploratory dashboards in multi-tenant environments. Druid excels as a data warehousing solution for fast aggregate queries on petabyte sized data sets. Druid supports a variety of flexible filters, exact calculations, approximate algorithms, and other useful calculations.
Its Virtual Data Warehouse delivers performance, security and agility to exceed the demands of modern-day operational analytics.
It allows analysis of data that is updated in real time. It offers instant results in most cases: the data is processed faster than it takes to create a query.
Kyvos is a BI acceleration platform that helps users analyze big data on the cloud with exceptionally high performance using any BI tool they like. You can accelerate your cloud analytics while optimizing your costs with Kyvos.
See all alternatives