Databricks vs Dremio

Need advice about which tool to choose?Ask the StackShare community!

Databricks

252
415
+ 1
8
Dremio

77
229
+ 1
7
Add tool
Advice on Databricks and Dremio

We need to perform ETL from several databases into a data warehouse or data lake. We want to

  • keep raw and transformed data available to users to draft their own queries efficiently
  • give users the ability to give custom permissions and SSO
  • move between open-source on-premises development and cloud-based production environments

We want to use inexpensive Amazon EC2 instances only on medium-sized data set 16GB to 32GB feeding into Tableau Server or PowerBI for reporting and data analysis purposes.

See more
Replies (3)

You could also use AWS Lambda and use Cloudwatch event schedule if you know when the function should be triggered. The benefit is that you could use any language and use the respective database client.

But if you orchestrate ETLs then it makes sense to use Apache Airflow. This requires Python knowledge.

See more
Recommends
Airflow

Though we have always built something custom, Apache airflow (https://airflow.apache.org/) stood out as a key contender/alternative when it comes to open sources. On the commercial offering, Amazon Redshift combined with Amazon Kinesis (for complex manipulations) is great for BI, though Redshift as such is expensive.

See more
Recommends

You may want to look into a Data Virtualization product called Conduit. It connects to disparate data sources in AWS, on prem, Azure, GCP, and exposes them as a single unified Spark SQL view to PowerBI (direct query) or Tableau. Allows auto query and caching policies to enhance query speeds and experience. Has a GPU query engine and optimized Spark for fallback. Can be deployed on your AWS VM or on prem, scales up and out. Sounds like the ideal solution to your needs.

See more
karunakaran karthikeyan
Needs advice
on
Talend
and
Dremio

I am trying to build a data lake by pulling data from multiple data sources ( custom-built tools, excel files, CSV files, etc) and use the data lake to generate dashboards.

My question is which is the best tool to do the following:

  1. Create pipelines to ingest the data from multiple sources into the data lake
  2. Help me in aggregating and filtering data available in the data lake.
  3. Create new reports by combining different data elements from the data lake.

I need to use only open-source tools for this activity.

I appreciate your valuable inputs and suggestions. Thanks in Advance.

See more
Replies (1)
Rod Beecham
Partnering Lead at Zetaris · | 3 upvotes · 21.6K views
Recommends
Dremio

Hi Karunakaran. I obviously have an interest here, as I work for the company, but the problem you are describing is one that Zetaris can solve. Talend is a good ETL product, and Dremio is a good data virtualization product, but the problem you are describing best fits a tool that can combine the five styles of data integration (bulk/batch data movement, data replication/data synchronization, message-oriented movement of data, data virtualization, and stream data integration). I may be wrong, but Zetaris is, to the best of my knowledge, the only product in the world that can do this. Zetaris is not a dashboarding tool - you would need to combine us with Tableau or Qlik or PowerBI (or whatever) - but Zetaris can consolidate data from any source and any location (structured, unstructured, on-prem or in the cloud) in real time to allow clients a consolidated view of whatever they want whenever they want it. Please take a look at www.zetaris.com for more information. I don't want to do a "hard sell", here, so I'll say no more! Warmest regards, Rod Beecham.

See more
Get Advice from developers at your company using Private StackShare. Sign up for Private StackShare.
Learn More
Pros of Databricks
Pros of Dremio
  • 1
    Best Performances on large datasets
  • 1
    True lakehouse architecture
  • 1
    Scalability
  • 1
    Databricks doesn't get access to your data
  • 1
    Usage Based Billing
  • 1
    Security
  • 1
    Data stays in your cloud account
  • 1
    Multicloud
  • 3
    Nice GUI to enable more people to work with Data
  • 2
    Connect NoSQL databases with RDBMS
  • 2
    Easier to Deploy

Sign up to add or upvote prosMake informed product decisions

Sign up to add or upvote consMake informed product decisions

What is Databricks?

Databricks Unified Analytics Platform, from the original creators of Apache Spark™, unifies data science and engineering across the Machine Learning lifecycle from data preparation to experimentation and deployment of ML applications.

What is Dremio?

Dremio—the data lake engine, operationalizes your data lake storage and speeds your analytics processes with a high-performance and high-efficiency query engine while also democratizing data access for data scientists and analysts.

Need advice about which tool to choose?Ask the StackShare community!

What companies use Databricks?
What companies use Dremio?
See which teams inside your own company are using Databricks or Dremio.
Sign up for Private StackShareLearn More

Sign up to get full access to all the companiesMake informed product decisions

What tools integrate with Databricks?
What tools integrate with Dremio?

Sign up to get full access to all the tool integrationsMake informed product decisions

What are some alternatives to Databricks and Dremio?
Snowflake
Snowflake eliminates the administration and management demands of traditional data warehouses and big data platforms. Snowflake is a true data warehouse as a service running on Amazon Web Services (AWS)—no infrastructure to manage and no knobs to turn.
Azure Databricks
Accelerate big data analytics and artificial intelligence (AI) solutions with Azure Databricks, a fast, easy and collaborative Apache Spark–based analytics service.
Domino
Use our cloud-hosted infrastructure to securely run your code on powerful hardware with a single command — without any changes to your code. If you have your own infrastructure, our Enterprise offering provides powerful, easy-to-use cluster management functionality behind your firewall.
Confluent
It is a data streaming platform based on Apache Kafka: a full-scale streaming platform, capable of not only publish-and-subscribe, but also the storage and processing of data within the stream
Apache Spark
Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.
See all alternatives