Need advice about which tool to choose?Ask the StackShare community!

DMTK

4
18
+ 1
0
TensorFlow

3.8K
3.5K
+ 1
106
Add tool

DMTK vs TensorFlow: What are the differences?

DMTK: Microsoft Distributed Machine Learning Tookit. DMTK provides a parameter server based framework for training machine learning models on big data with numbers of machines. It is currently a standard C++ library and provides a series of friendly programming interfaces; TensorFlow: Open Source Software Library for Machine Intelligence. TensorFlow is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API.

DMTK and TensorFlow can be primarily classified as "Machine Learning" tools.

DMTK is an open source tool with 2.68K GitHub stars and 596 GitHub forks. Here's a link to DMTK's open source repository on GitHub.

Decisions about DMTK and TensorFlow

Pytorch is a famous tool in the realm of machine learning and it has already set up its own ecosystem. Tutorial documentation is really detailed on the official website. It can help us to create our deep learning model and allowed us to use GPU as the hardware support.

I have plenty of projects based on Pytorch and I am familiar with building deep learning models with this tool. I have used TensorFlow too but it is not dynamic. Tensorflow works on a static graph concept that means the user first has to define the computation graph of the model and then run the ML model, whereas PyTorch believes in a dynamic graph that allows defining/manipulating the graph on the go. PyTorch offers an advantage with its dynamic nature of creating graphs.

See more
Xi Huang
Developer at University of Toronto · | 8 upvotes · 94.9K views

For data analysis, we choose a Python-based framework because of Python's simplicity as well as its large community and available supporting tools. We choose PyTorch over TensorFlow for our machine learning library because it has a flatter learning curve and it is easy to debug, in addition to the fact that our team has some existing experience with PyTorch. Numpy is used for data processing because of its user-friendliness, efficiency, and integration with other tools we have chosen. Finally, we decide to include Anaconda in our dev process because of its simple setup process to provide sufficient data science environment for our purposes. The trained model then gets deployed to the back end as a pickle.

See more
Manage your open source components, licenses, and vulnerabilities
Learn More
Pros of DMTK
Pros of TensorFlow
    Be the first to leave a pro
    • 32
      High Performance
    • 19
      Connect Research and Production
    • 16
      Deep Flexibility
    • 12
      Auto-Differentiation
    • 11
      True Portability
    • 6
      Easy to use
    • 5
      High level abstraction
    • 5
      Powerful

    Sign up to add or upvote prosMake informed product decisions

    Cons of DMTK
    Cons of TensorFlow
      Be the first to leave a con
      • 9
        Hard
      • 6
        Hard to debug
      • 2
        Documentation not very helpful

      Sign up to add or upvote consMake informed product decisions

      What is DMTK?

      DMTK provides a parameter server based framework for training machine learning models on big data with numbers of machines. It is currently a standard C++ library and provides a series of friendly programming interfaces.

      What is TensorFlow?

      TensorFlow is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API.

      Need advice about which tool to choose?Ask the StackShare community!

      What companies use DMTK?
      What companies use TensorFlow?
      Manage your open source components, licenses, and vulnerabilities
      Learn More

      Sign up to get full access to all the companiesMake informed product decisions

      What tools integrate with DMTK?
      What tools integrate with TensorFlow?
        No integrations found

        Sign up to get full access to all the tool integrationsMake informed product decisions

        Blog Posts

        TensorFlowPySpark+2
        1
        770
        PythonDockerKubernetes+14
        12
        2655
        Dec 4 2019 at 8:01PM

        Pinterest

        KubernetesJenkinsTensorFlow+4
        5
        3347
        What are some alternatives to DMTK and TensorFlow?
        Postman
        It is the only complete API development environment, used by nearly five million developers and more than 100,000 companies worldwide.
        Postman
        It is the only complete API development environment, used by nearly five million developers and more than 100,000 companies worldwide.
        Stack Overflow
        Stack Overflow is a question and answer site for professional and enthusiast programmers. It's built and run by you as part of the Stack Exchange network of Q&A sites. With your help, we're working together to build a library of detailed answers to every question about programming.
        Google Maps
        Create rich applications and stunning visualisations of your data, leveraging the comprehensiveness, accuracy, and usability of Google Maps and a modern web platform that scales as you grow.
        Elasticsearch
        Elasticsearch is a distributed, RESTful search and analytics engine capable of storing data and searching it in near real time. Elasticsearch, Kibana, Beats and Logstash are the Elastic Stack (sometimes called the ELK Stack).
        See all alternatives