Google BigQuery
Google BigQuery

405
222
91
Treasure Data
Treasure Data

14
18
5
Add tool

Google BigQuery vs Treasure Data: What are the differences?

Developers describe Google BigQuery as "Analyze terabytes of data in seconds". Run super-fast, SQL-like queries against terabytes of data in seconds, using the processing power of Google's infrastructure Load data with ease. Bulk load your data using Google Cloud Storage or stream it in. Easy access. Access BigQuery by using a browser tool, a command-line tool, or by making calls to the BigQuery REST API with client libraries such as Java, PHP or Python.. On the other hand, Treasure Data is detailed as "Flexible data analytics infrastructure as a service". Treasure Data's Big Data as-a-Service cloud platform enables data-driven businesses to focus their precious development resources on their applications, not on mundane, time-consuming integration and operational tasks. The Treasure Data Cloud Data Warehouse service offers an affordable, quick-to-implement and easy-to-use big data option that does not require specialized IT resources, making big data analytics available to the mass market.

Google BigQuery and Treasure Data can be categorized as "Big Data as a Service" tools.

Some of the features offered by Google BigQuery are:

  • All behind the scenes- Your queries can execute asynchronously in the background, and can be polled for status.
  • Import data with ease- Bulk load your data using Google Cloud Storage or stream it in bursts of up to 1,000 rows per second.
  • Affordable big data- The first Terabyte of data processed each month is free.

On the other hand, Treasure Data provides the following key features:

  • Instant Integration- Using td-agent, you can start importing your data from existing log files, web and packaged applications right away.
  • Streaming or Batch?- You choose! Our data collection tool, td-agent, enables you to stream or batch your data to the cloud in JSON format.
  • Secure Upload- The connection between td-agent and the cloud is SSL-encrypted, ensuring secure transfer of your data.
- No public GitHub repository available -
- No public GitHub repository available -

What is Google BigQuery?

Run super-fast, SQL-like queries against terabytes of data in seconds, using the processing power of Google's infrastructure. Load data with ease. Bulk load your data using Google Cloud Storage or stream it in. Easy access. Access BigQuery by using a browser tool, a command-line tool, or by making calls to the BigQuery REST API with client libraries such as Java, PHP or Python.

What is Treasure Data?

Treasure Data's Big Data as-a-Service cloud platform enables data-driven businesses to focus their precious development resources on their applications, not on mundane, time-consuming integration and operational tasks. The Treasure Data Cloud Data Warehouse service offers an affordable, quick-to-implement and easy-to-use big data option that does not require specialized IT resources, making big data analytics available to the mass market.

Want advice about which of these to choose?Ask the StackShare community!

Why do developers choose Google BigQuery?
Why do developers choose Treasure Data?

Sign up to add, upvote and see more prosMake informed product decisions

What are the cons of using Google BigQuery?
What are the cons of using Treasure Data?
    Be the first to leave a con
    What companies use Google BigQuery?
    What companies use Treasure Data?

    Sign up to get full access to all the companiesMake informed product decisions

    What tools integrate with Google BigQuery?
    What tools integrate with Treasure Data?

    Sign up to get full access to all the tool integrationsMake informed product decisions

    What are some alternatives to Google BigQuery and Treasure Data?
    Google Cloud Bigtable
    Google Cloud Bigtable offers you a fast, fully managed, massively scalable NoSQL database service that's ideal for web, mobile, and Internet of Things applications requiring terabytes to petabytes of data. Unlike comparable market offerings, Cloud Bigtable doesn't require you to sacrifice speed, scale, or cost efficiency when your applications grow. Cloud Bigtable has been battle-tested at Google for more than 10 years—it's the database driving major applications such as Google Analytics and Gmail.
    Amazon Redshift
    Redshift makes it simple and cost-effective to efficiently analyze all your data using your existing business intelligence tools. It is optimized for datasets ranging from a few hundred gigabytes to a petabyte or more and costs less than $1,000 per terabyte per year, a tenth the cost of most traditional data warehousing solutions.
    Hadoop
    The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using simple programming models. It is designed to scale up from single servers to thousands of machines, each offering local computation and storage.
    Snowflake
    Snowflake eliminates the administration and management demands of traditional data warehouses and big data platforms. Snowflake is a true data warehouse as a service running on Amazon Web Services (AWS)—no infrastructure to manage and no knobs to turn.
    Amazon Athena
    Amazon Athena is an interactive query service that makes it easy to analyze data in Amazon S3 using standard SQL. Athena is serverless, so there is no infrastructure to manage, and you pay only for the queries that you run.
    See all alternatives
    Decisions about Google BigQuery and Treasure Data
    No stack decisions found
    Interest over time
    Reviews of Google BigQuery and Treasure Data
    No reviews found
    How developers use Google BigQuery and Treasure Data
    Avatar of ShareThis
    ShareThis uses Google BigQueryGoogle BigQuery

    BigQuery allows our team to pull reports quickly using a SQL-like queries against our large store of data about social sharing. We use the information throughout the company, to do everything from making internal product decisions based on usage patterns to sharing certain kinds of custom reports with our publishers.

    Avatar of Lyndon Wong
    Lyndon Wong uses Google BigQueryGoogle BigQuery

    Aggregation of user events and traits across a marketing website, SaaS web application, user account provisioning backend and Salesforce CRM. Enables full-funnel analysis of campaign ROI, customer acquisition, engagement and retention at both the user and target account level.

    How much does Google BigQuery cost?
    How much does Treasure Data cost?
    News about Google BigQuery
    More news