Need advice about which tool to choose?Ask the StackShare community!
Julia vs MATLAB: What are the differences?
Introduction
In this article, we will discuss the key differences between Julia and MATLAB, two popular programming languages commonly used for scientific and numerical computing.
Syntax and Ease of Use: Julia is known for its simple and readable syntax, which closely resembles traditional mathematical notation. The language is designed to be approachable and intuitive, making it easier for new users to understand and write code. On the other hand, MATLAB has a more traditional programming syntax, which may require some learning curve for new users.
Performance and Speed: Julia is renowned for its exceptional performance and speed. It is designed to execute code at near-native speeds, utilizing just-in-time (JIT) compilation to optimize performance. This computational efficiency makes Julia ideal for complex calculations and large-scale simulations. In contrast, MATLAB is not as efficient as Julia when it comes to computational speed, particularly for intensive scientific and numerical computations.
Open-source vs Proprietary: Julia is an open-source programming language, allowing users to freely access and modify its source code. This open nature fosters a strong community of contributors, leading to continuous development and improvement of the language and its ecosystem. Conversely, MATLAB is a proprietary software developed by MathWorks. While it provides comprehensive functionality and a vast range of toolboxes, users have limited visibility and control over the inner workings of the language.
Interoperability and Integration: Julia is designed to seamlessly integrate and interact with other programming languages such as Python, R, and C. This interoperability allows users to leverage the strengths of different languages while working on complex projects. In contrast, MATLAB does have some interaction capabilities with other languages through additional toolboxes, but it is not as flexible or comprehensive as Julia in this regard.
Parallel Computing: Julia has built-in parallel computing capabilities, which enable users to execute code across multiple processors and distributed computing clusters. This parallelism is especially beneficial for executing computationally intensive tasks concurrently, resulting in significant performance improvements. In comparison, MATLAB requires additional toolboxes and specific code modifications to achieve parallel computing, making it less straightforward to use and optimize for parallelism.
Community and Documentation: Julia's community is rapidly growing, and it has an active user base that actively contributes to its development. The language has extensive documentation and support resources, including online forums, tutorials, and user-contributed packages. MATLAB, being a mature and widely used language, also has a significant community and offers comprehensive documentation and support resources. However, Julia's community and support ecosystem are relatively more dynamic and evolving.
In summary, Julia stands out for its simple yet powerful syntax, superior performance, open-source nature, rich interoperability, built-in parallel computing capabilities, and a growing community. MATLAB, on the other hand, offers a more traditional syntax, extensive functionality through various toolboxes, and a well-established user base.
After writing a project in Julia we decided to stick with Kotlin. Julia is a nice language and has superb REPL support, but poor tooling and the lack of reproducibility of the program runs makes it too expensive to work with. Kotlin on the other hand now has nice Jupyter support, which mostly covers REPL requirements.
Pros of Julia
- Fast Performance and Easy Experimentation25
- Designed for parallelism and distributed computation22
- Free and Open Source19
- Dynamic Type System17
- Calling C functions directly17
- Multiple Dispatch16
- Lisp-like Macros16
- Powerful Shell-like Capabilities10
- Jupyter notebook integration10
- REPL8
- String handling4
- Emojis as variable names4
- Interoperability3
Pros of MATLAB
- Simulink20
- Model based software development5
- Functions, statements, plots, directory navigation easy5
- S-Functions3
- REPL2
- Simple variabel control1
- Solve invertible matrix1
Sign up to add or upvote prosMake informed product decisions
Cons of Julia
- Immature library management system5
- Slow program start4
- JIT compiler is very slow3
- Poor backwards compatibility3
- Bad tooling2
- No static compilation2
Cons of MATLAB
- Parameter-value pairs syntax to pass arguments clunky2
- Doesn't allow unpacking tuples/arguments lists with *2
- Does not support named function arguments2