StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. AI
  3. Development & Training Tools
  4. Machine Learning Tools
  5. Keras vs TensorFlow vs Theano

Keras vs TensorFlow vs Theano

OverviewDecisionsComparisonAlternatives

Overview

TensorFlow
TensorFlow
Stacks3.9K
Followers3.5K
Votes106
GitHub Stars192.3K
Forks74.9K
Keras
Keras
Stacks1.1K
Followers1.1K
Votes22
Theano
Theano
Stacks32
Followers65
Votes0
GitHub Stars10.0K
Forks2.5K

Keras vs TensorFlow vs Theano: What are the differences?

## Key Differences between Keras, TensorFlow, and Theano

Keras is a high-level neural networks API that is designed to be user-friendly, modular, and extensible. TensorFlow is a powerful open-source deep learning library developed by Google, known for its flexibility and scalability. Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently.

1. **Ease of Use**: Keras is known for its simplicity and ease of use, making it ideal for beginners and rapid prototyping. TensorFlow, on the other hand, offers more flexibility and control for advanced users with features like low-level operations and custom gradients. Theano has a steeper learning curve compared to Keras, but it offers efficiency optimizations not present in the other frameworks.
2. **Backend Support**: Keras is capable of utilizing TensorFlow as its backend, seamlessly leveraging the functionalities of TensorFlow within Keras models. TensorFlow, on the other hand, has its own extensive set of tools and libraries, offering a wide range of features beyond what Keras provides. Theano, while being independent of other frameworks, may lack some of the advanced features available in TensorFlow.
3. **Community Support**: TensorFlow has a large and active community of developers and researchers contributing to its continuous improvement and development. Keras, being integrated with TensorFlow, also benefits from this strong community support. Theano, although once widely used, has seen a decline in community activity and development due to the emergence of more advanced frameworks like TensorFlow.
4. **Computational Graph Representation**: TensorFlow and Theano use a static computational graph, meaning the graph is defined once and executed many times. In contrast, Keras uses a dynamic computational graph, allowing for easier model building and debugging. Each approach has its own advantages in terms of performance and flexibility.
5. **Deployment and Production**: TensorFlow offers better support for deployment in production settings, with tools like TensorFlow Serving and TensorFlow Lite for mobile and embedded devices. Keras also provides deployment options but may not offer the same level of integration and optimization as TensorFlow. Theano lacks dedicated deployment tools, which can make it more challenging to deploy models in production environments.
6. **Customization and Extensibility**: TensorFlow provides a high degree of customization and extensibility through its low-level APIs, allowing users to create custom operations and optimizations. Keras offers a more simplified interface for building neural networks but may limit the extent to which users can customize their models. Theano, while flexible, may require more manual intervention for customization compared to TensorFlow and Keras.

In Summary, TensorFlow provides a powerful and versatile deep learning framework with extensive community support, while Keras offers a user-friendly interface and seamless integration with TensorFlow. Theano, although efficient, has seen a decline in popularity and support in favor of more advanced frameworks like TensorFlow.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on TensorFlow, Keras, Theano

Xi
Xi

Developer at DCSIL

Oct 11, 2020

Decided

For data analysis, we choose a Python-based framework because of Python's simplicity as well as its large community and available supporting tools. We choose PyTorch over TensorFlow for our machine learning library because it has a flatter learning curve and it is easy to debug, in addition to the fact that our team has some existing experience with PyTorch. Numpy is used for data processing because of its user-friendliness, efficiency, and integration with other tools we have chosen. Finally, we decide to include Anaconda in our dev process because of its simple setup process to provide sufficient data science environment for our purposes. The trained model then gets deployed to the back end as a pickle.

99.4k views99.4k
Comments
Adithya
Adithya

Student at PES UNIVERSITY

May 11, 2020

Needs advice

I have just started learning some basic machine learning concepts. So which of the following frameworks is better to use: Keras / TensorFlow/PyTorch. I have prior knowledge in python(and even pandas), java, js and C. It would be nice if something could point out the advantages of one over the other especially in terms of resources, documentation and flexibility. Also, could someone tell me where to find the right resources or tutorials for the above frameworks? Thanks in advance, hope you are doing well!!

107k views107k
Comments
philippe
philippe

Research & Technology & Innovation | Software & Data & Cloud | Professor in Computer Science

Sep 13, 2020

Review

Hello Amina, You need first to clearly identify the input data type (e.g. temporal data or not? seasonality or not?) and the analysis type (e.g., time series?, categories?, etc.). If you can answer these questions, that would be easier to help you identify the right tools (or Python libraries). If time series and Python, you have choice between Pendas/Statsmodels/Serima(x) (if seasonality) or deep learning techniques with Keras.

Good work, Philippe

4.64k views4.64k
Comments

Detailed Comparison

TensorFlow
TensorFlow
Keras
Keras
Theano
Theano

TensorFlow is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API.

Deep Learning library for Python. Convnets, recurrent neural networks, and more. Runs on TensorFlow or Theano. https://keras.io/

Theano is a Python library that lets you to define, optimize, and evaluate mathematical expressions, especially ones with multi-dimensional arrays (numpy.ndarray).

-
neural networks API;Allows for easy and fast prototyping;Convolutional networks support;Recurent networks support;Runs on GPU
-
Statistics
GitHub Stars
192.3K
GitHub Stars
-
GitHub Stars
10.0K
GitHub Forks
74.9K
GitHub Forks
-
GitHub Forks
2.5K
Stacks
3.9K
Stacks
1.1K
Stacks
32
Followers
3.5K
Followers
1.1K
Followers
65
Votes
106
Votes
22
Votes
0
Pros & Cons
Pros
  • 32
    High Performance
  • 19
    Connect Research and Production
  • 16
    Deep Flexibility
  • 12
    Auto-Differentiation
  • 11
    True Portability
Cons
  • 9
    Hard
  • 6
    Hard to debug
  • 2
    Documentation not very helpful
Pros
  • 8
    Quality Documentation
  • 7
    Supports Tensorflow and Theano backends
  • 7
    Easy and fast NN prototyping
Cons
  • 4
    Hard to debug
No community feedback yet
Integrations
JavaScript
JavaScript
scikit-learn
scikit-learn
Python
Python
NumPy
NumPy
Python
Python

What are some alternatives to TensorFlow, Keras, Theano?

scikit-learn

scikit-learn

scikit-learn is a Python module for machine learning built on top of SciPy and distributed under the 3-Clause BSD license.

PyTorch

PyTorch

PyTorch is not a Python binding into a monolothic C++ framework. It is built to be deeply integrated into Python. You can use it naturally like you would use numpy / scipy / scikit-learn etc.

Kubeflow

Kubeflow

The Kubeflow project is dedicated to making Machine Learning on Kubernetes easy, portable and scalable by providing a straightforward way for spinning up best of breed OSS solutions.

TensorFlow.js

TensorFlow.js

Use flexible and intuitive APIs to build and train models from scratch using the low-level JavaScript linear algebra library or the high-level layers API

Polyaxon

Polyaxon

An enterprise-grade open source platform for building, training, and monitoring large scale deep learning applications.

Streamlit

Streamlit

It is the app framework specifically for Machine Learning and Data Science teams. You can rapidly build the tools you need. Build apps in a dozen lines of Python with a simple API.

MLflow

MLflow

MLflow is an open source platform for managing the end-to-end machine learning lifecycle.

H2O

H2O

H2O.ai is the maker behind H2O, the leading open source machine learning platform for smarter applications and data products. H2O operationalizes data science by developing and deploying algorithms and models for R, Python and the Sparkling Water API for Spark.

PredictionIO

PredictionIO

PredictionIO is an open source machine learning server for software developers to create predictive features, such as personalization, recommendation and content discovery.

Gluon

Gluon

A new open source deep learning interface which allows developers to more easily and quickly build machine learning models, without compromising performance. Gluon provides a clear, concise API for defining machine learning models using a collection of pre-built, optimized neural network components.

Related Comparisons

Postman
Swagger UI

Postman vs Swagger UI

Mapbox
Google Maps

Google Maps vs Mapbox

Mapbox
Leaflet

Leaflet vs Mapbox vs OpenLayers

Twilio SendGrid
Mailgun

Mailgun vs Mandrill vs SendGrid

Runscope
Postman

Paw vs Postman vs Runscope