Memcached vs Microsoft SQL Server vs SQLite

Need advice about which tool to choose?Ask the StackShare community!

Memcached

7.7K
5.6K
+ 1
473
Microsoft SQL Server

19.9K
15.3K
+ 1
540
SQLite

19.1K
15K
+ 1
535

Memcached vs Microsoft SQL Server vs SQLite: What are the differences?

Introduction:

Key Differences Between Memcached, Microsoft SQL Server, and SQLite:

  1. Type of Database: Memcached is an in-memory key-value store, perfect for quick data retrieval. Microsoft SQL Server is a full-fledged relational database management system that stores data in tables with relationships between them. SQLite is a lightweight, serverless, self-contained database that is best suited for local storage in mobile apps and embedded systems.

  2. Data Persistence: Memcached does not persist data to disk, meaning data is lost upon restarting the server. Microsoft SQL Server and SQLite both support data persistence, allowing data to be stored even after server restarts.

  3. Complexity and Query Language: Microsoft SQL Server offers a comprehensive set of features and a powerful query language with support for complex queries, stored procedures, and triggers. SQLite, on the other hand, is designed to be lightweight and has a simpler SQL implementation without support for advanced database features. Memcached is not a database system but rather a caching system, so it does not support querying like traditional databases.

  4. Scalability: Memcached is highly scalable and can easily distribute data across multiple nodes, making it suitable for high-traffic websites. Microsoft SQL Server and SQLite are limited in scalability compared to Memcached due to their disk-based nature, making them more suitable for smaller to medium-sized applications.

  5. ACID Compliance: Microsoft SQL Server and SQLite both ensure ACID (Atomicity, Consistency, Isolation, Durability) compliance, providing data integrity and reliability. Memcached sacrifices ACID compliance for performance gains as it focuses on caching frequently accessed data rather than ensuring transactional consistency.

  6. Security Features: Microsoft SQL Server offers a wide range of security features such as encryption, access control, and auditing mechanisms to protect data. SQLite lacks advanced security features compared to Microsoft SQL Server and is more suitable for smaller, local applications. Memcached does not offer built-in security features and relies on external mechanisms for securing data.

In Summary, the key differences between Memcached, Microsoft SQL Server, and SQLite lie in their database types, data persistence, complexity, scalability, ACID compliance, and security features.

Advice on Memcached, Microsoft SQL Server, and SQLite
Dimelo Waterson
Needs advice
on
MySQLMySQLPostgreSQLPostgreSQL
and
SQLiteSQLite

I need to add a DBMS to my stack, but I don't know which. I'm tempted to learn SQLite since it would be useful to me with its focus on local access without concurrency. However, doing so feels like I would be defeating the purpose of trying to expand my skill set since it seems like most enterprise applications have the opposite requirements.

To be able to apply what I learn to more projects, what should I try to learn? MySQL? PostgreSQL? Something else? Is there a comfortable middle ground between high applicability and ease of use?

See more
Replies (3)
Recommends
on
SQLiteSQLite

You can easily start with SQlite. Really easy to startup since it doesn't require you to install any additional software since is self-contained. It has interfaces in almost any language and also GUIs. Start learning SQL basics and simpler data models and structures. There are many tutorials, also available in the official website. From there you will easily migrate to another database. MySQL could be next, sonce it's easier to learn at first and has more resources available. PostgreSQL is less widespread, more challenging and has the fewer resorces, but once you have some experience with MySQL is really easy to learn as well. All these technologies are really widespread and used accross the industry so you won't make a wrong decision with any of these.

See more
Stephen Badger | Vital Beats
Senior DevOps Engineer at Vital Beats · | 6 upvotes · 290.3K views

A question you might want to think about is "What kind of experience do I want to gain, by using a DBMS?". If your aim is to have experience with SQL and any related libraries and frameworks for your language of choice (python, I think?), then it kind of doesn't matter too much which you pick so much. As others have said, SQLite would offer you the ability to very easily get started, and would give you a reasonably standard (if a little basic) SQL dialect to work with.

If your aim is actually to have a bit of "operational" experience, in terms of things like what command line tools might be available as standard for the DBMS, understanding how the DBMS handles multiple databases, when to use multiple schemas vs multiple databases, some basic privilege management etc. Then I would recommend PostgreSQL. SQLite's simplicity actually avoids most of these experiences, which is not helpful to you if that is what you hope to learn. MySQL has a few "quirks" to how it manages things like multiple databases, which may lead you to making less good decisions if you tried to take your experience over to different DBMS, especially in bigger enterprise roles. PostgreSQL is kind of a happy middle ground here, with the ability to start PostgreSQL servers via docker or docker-compose making the actual day-to-day management pretty easy, while still giving you experience of the kinds of considerations I have listed above.

At Vital Beats we make use of PostgreSQL, largely because it offers us a happy balance between good management and backup of data, and good standard command line tools, which is essential for us where we are deploying our solutions within Kubernetes / docker, and so more graphical tools are not always appropriate for us. PostgreSQL is also pretty universally supported in terms of language libraries and frameworks, without having to make compromises on how we want to store and layout our data.

See more
Julien DeFrance
Principal Software Engineer at Tophatter · | 1 upvotes · 281.8K views
Recommends
on
MySQLMySQL

MySQL's very popular, easy to install, is also available as a managed service across most popular cloud offerings. The support/default tooling (such as MySQL Query Workbench) certainly is a little more baked than what you'll find for Postgres.

https://dev.mysql.com/downloads/workbench/

See more

I am a Microsoft SQL Server programmer who is a bit out of practice. I have been asked to assist on a new project. The overall purpose is to organize a large number of recordings so that they can be searched. I have an enormous music library but my songs are several hours long. I need to include things like time, date and location of the recording. I don't have a problem with the general database design. I have two primary questions:

  1. I need to use either MySQL or PostgreSQL on a Linux based OS. Which would be better for this application?
  2. I have not dealt with a sound based data type before. How do I store that and put it in a table? Thank you.
See more
Replies (6)

Hi Erin,

Honestly both databases will do the job just fine. I personally prefer Postgres.

Much more important is how you store the audio. While you could technically use a blob type column, it's really not ideal to be storing audio files which are "several hours long" in a database row. Instead consider storing the audio files in an object store (hosted options include backblaze b2 or aws s3) and persisting the key (which references that object) in your database column.

See more
Aaron Westley
Recommends
on
PostgreSQLPostgreSQL

Hi Erin, Chances are you would want to store the files in a blob type. Both MySQL and Postgres support this. Can you explain a little more about your need to store the files in the database? I may be more effective to store the files on a file system or something like S3. To answer your qustion based on what you are descibing I would slighly lean towards PostgreSQL since it tends to be a little better on the data warehousing side.

See more
Christopher Wray
Web Developer at Soltech LLC · | 3 upvotes · 472.9K views
Recommends
on
DirectusDirectus
at

Hey Erin! I would recommend checking out Directus before you start work on building your own app for them. I just stumbled upon it, and so far extremely happy with the functionalities. If your client is just looking for a simple web app for their own data, then Directus may be a great option. It offers "database mirroring", so that you can connect it to any database and set up functionality around it!

See more
Julien DeFrance
Principal Software Engineer at Tophatter · | 3 upvotes · 472.5K views
Recommends
on
Amazon AuroraAmazon Aurora

Hi Erin! First of all, you'd probably want to go with a managed service. Don't spin up your own MySQL installation on your own Linux box. If you are on AWS, thet have different offerings for database services. Standard RDS vs. Aurora. Aurora would be my preferred choice given the benefits it offers, storage optimizations it comes with... etc. Such managed services easily allow you to apply new security patches and upgrades, set up backups, replication... etc. Doing this on your own would either be risky, inefficient, or you might just give up. As far as which database to chose, you'll have the choice between Postgresql, MySQL, Maria DB, SQL Server... etc. I personally would recommend MySQL (latest version available), as the official tooling for it (MySQL Workbench) is great, stable, and moreover free. Other database services exist, I'd recommend you also explore Dynamo DB.

Regardless, you'd certainly only keep high-level records, meta data in Database, and the actual files, most-likely in S3, so that you can keep all options open in terms of what you'll do with them.

See more
Recommends
on
PostgreSQLPostgreSQL

Hi Erin,

  • Coming from "Big" DB engines, such as Oracle or MSSQL, go for PostgreSQL. You'll get all the features you need with PostgreSQL.
  • Your case seems to point to a "NoSQL" or Document Database use case. Since you get covered on this with PostgreSQL which achieves excellent performances on JSON based objects, this is a second reason to choose PostgreSQL. MongoDB might be an excellent option as well if you need "sharding" and excellent map-reduce mechanisms for very massive data sets. You really should investigate the NoSQL option for your use case.
  • Starting with AWS Aurora is an excellent advise. since "vendor lock-in" is limited, but I did not check for JSON based object / NoSQL features.
  • If you stick to Linux server, the PostgreSQL or MySQL provided with your distribution are straightforward to install (i.e. apt install postgresql). For PostgreSQL, make sure you're comfortable with the pg_hba.conf, especially for IP restrictions & accesses.

Regards,

See more
Klaus Nji
Staff Software Engineer at SailPoint Technologies · | 1 upvotes · 472.6K views
Recommends
on
PostgreSQLPostgreSQL

I recommend Postgres as well. Superior performance overall and a more robust architecture.

See more
Needs advice
on
FirebaseFirebaseMySQLMySQL
and
SQLiteSQLite

Hi everyone! I am a high school student, starting a massive project. I'm building a system for a boarding school to be better connected to their students and be more efficient with information. In the meantime, I am developing a website and an android app. What's the best datastore I can use? I need to be able to access student data on the app from the main database and send push notifications. Also feed updates. What's the best approach? What's the best tool I can use to deploy the website and the database? One for testing and prototyping, and an official one... Thanks in advance!!!!

See more
Replies (3)
Ahmed AlAskalany
Android Developer at Kitab Sawti · | 5 upvotes · 335.1K views
Recommends
on
FirebaseFirebase

Firebase has Android, iOS, and Web SDKs; and a console where you can develop, manage, and monitor all the data and analytics from one place. Firebase real-time database is good for online presence and instant feed updates, while Firebase Firestone is good for user profile and other relational data records. Firebase has a UI SDK which makes it easy to interface with the resources in the project, and with tons of tutorials and starter projects it should be easy to quickly have a decent prototype to iterate upon. Since you said Massive, use their pricing calculator to figure if your expected scale will be covered by the free quota or if you go for the pay-as-you-go that the price is reasonable for your project.

Good luck with the project!

See more
Paul Whittemore
Developer and Owner at Appurist Software · | 4 upvotes · 335.2K views
Recommends
on
FirebaseFirebase

It sounds like a server-client relationship (central database) and while SQLite is probably the simplest, note that its performance is probably the worst of the top 20 or so choices you have. It is different from Firebase and MySQL (and most other databases) in that it is embedded in the product, although it could be embedded in your server itself.

MySQL would require a separate MySQL db server, which means either two servers (one for MySQL, and one to provide your specific services to your client app) or both running on a single server machine. There are many alternatives in the same category as MySQL, and a choice of relational databases or document (NoSQL) databases. But architecturally, they are in the same category as MySQL, a separate db server that your application server would get its data from.

Firebase is different yet again, in that it is a service that is already hosted by a company, providing many integrated features such as authentication and storage of user account info. However it does take care of many of the concerns with running a server, such as performance, scalability and management. There are some negatives that you should be aware of though: any investment of time and coding with Firebase is pretty much non-portable, in that you are stuck with Firebase going forward. If you needed to switch to a different service, not only would it be a different API, but it would be a different architecture and much of your coding would need to be discarded. Second, it's owned and run by Google now, so you have a large corporation backing it, but that also means they could decide to discontinue it without any real effect on the Google bottom line. Also some folks would have concerns with storing data on Google servers. That said, I think if you are aware of these in advance, and especially if you are a high school student, that Firebase is a fairly easy winner here. The server is already set up for you, the documentation is very complete and rich, with lots of examples, and Google is not going away. The main concern would be if it really is massive, there could be a rising cost to the service. I suspect though that it is not massive, even if everyone in a school used it. The number of concurrent connections would not be huge (probably not even into the hundreds, even if there are thousands of users).

I'd go with Firebase even though you will need to learn their API, because you'll need to learn something one way or another. SQLite is a bit of a toy database, and MySQL is a real one but you (or someone) would need to manage that server on top of needing to develop the server and client app. With Firebase, much of the server already exists, including a professionally hosted database. There are tons of high-level features provided and initial cost is somewhere between very low and zero.

Part of this is dependent on what language you want to write this in. Javascript for a cross-platform client app (I'd use Vue.js + Vuetify for UI, and provide it as a web app and optionally wrap that with Electron for a desktop app, Apache Cordova for mobile). Server could be Javascript with an Express-based REST API on Node.js, talking to Firebase for services.

If you were a Java developer though, all this goes out the window and I'd recommend a simple Java server with Javalin for REST API, and embedded ObjectDB for database storage (combined into one server). ObjectDB is very very fast and can be separated out into a scalable server if this became truly massive. But you would probably never need to go that far.

All of this is a lot of work. I hope this isn't for something like an assignment. It is in the order of 6 months of work if you know what you're doing, all year if you're learning as you go.

See more
Michael Maraist
Chief Architect at Pixia Corp · | 2 upvotes · 334.5K views
Recommends
on
RocksDBRocksDB

Don't think you can go wrong with MySQL or postgresql. python+postgres is VERY well supported stack and can do almost anything. Great visualization and administrative tools for both. There are some data-mismatch problems, however.. node.js/python with mongodb is a bit more modern and makes it trivial to "serialize" data with sprinklings of indexes. If you're using go-lang, then RocksDB is a great high-performance data-modeling base (it's not relational how-ever) It's more like a building-block for key-value store. But it's ACID so you CAN build relational systems on top. I've used LevelDB for other projects (Java/C) (similar architecture and works great on android - chrome uses it for it's metadata-storage). Rock/Level can achieve multi-million writes on cheap hardware thanks to it's trade-offs.

I'm very familiar with SQLite.. Personally my least favorite, but it's the most portable database format, and it does support ACID.. I have many gripes, but biggest issue is parallel access (you really need a single process/thread to own the data-model, then use IPC to communicate with your process/thread).. (same could be said for LevelDB, but that's so efficient, it's almost never an issue).

If your'e using Java, then JavaDB/DerbyDB/HSQLDB are EXCELLENT systems.. highly multi-threaded, good stand-alone tools. (embedded or TCP-connected). Perfect for unit-tests. Can use simple dumb portable formats (e.g. text-file containing only inserts) all the way to classic journaled binary B-tree formats to pure-in-memory. Java has a lot of overhead, so this is only really viable if you're already using Java in your project.

For high performance "memsql" is mysql API to a hybrid in-memory index + on-disk column-database (feels like classic SQL to you though). Falls into the mysql-swiss-army-knife tool-kit.

Similarly with in-memory there is "redis".. Absolutely a joy to work with. It too is a specialty swiss army knife. Steer clear of redis for primary data that you can't lose.. while redis does support persisting data, it isn't very efficient and will become the bottleneck. redis is great for micro-queue's, topics, stat-aggregators, message-repositories (password-management systems, where writes are rare so persistance is viable). Plus I love that redis uses a pure-text protocol so I can netcat or telnet directly into it and do stuff.

I've loved cloud-data-stores.. Amazon "DynamoDB" or Google BigTable are awesome!!! Cheap compared to normal hosting fees of an AWS EC2 instance.. You can play all day.. put a terabyte up, then blow it away.. pay for what you play with. It's a very very different data-model though.. They give you a very very few set of tricks that let you do complex data-modeling - and you have to be clever and have enough foresight to not block yourself into a hole (or have customer abuse expensive queries).

Then there's Cassandra/Hadoop (HBase). These are petabyte scale databases (technically so is Dynamo/BigTable). They're incredibly efficient at what they do. And they have a lot of plugins to do almost anything you need. I personally love these the best (and RocksDB/LevelDB are like their infant children offspring). You can run these on your laptop (unlike Amazon/Google engines above). But their discipline is very different than all the other's above.

See more
Decisions about Memcached, Microsoft SQL Server, and SQLite

Backend:

  • Considering that our main app functionality involves data processing, we chose Python as the programming language because it offers many powerful math libraries for data-related tasks. We will use Flask for the server due to its good integration with Python. We will use a relational database because it has good performance and we are mostly dealing with CSV files that have a fixed structure. We originally chose SQLite, but after realizing the limitations of file-based databases, we decided to switch to PostgreSQL, which has better compatibility with our hosting service, Heroku.
See more
Manage your open source components, licenses, and vulnerabilities
Learn More
Pros of Memcached
Pros of Microsoft SQL Server
Pros of SQLite
  • 139
    Fast object cache
  • 129
    High-performance
  • 91
    Stable
  • 65
    Mature
  • 33
    Distributed caching system
  • 11
    Improved response time and throughput
  • 3
    Great for caching HTML
  • 2
    Putta
  • 139
    Reliable and easy to use
  • 101
    High performance
  • 95
    Great with .net
  • 65
    Works well with .net
  • 56
    Easy to maintain
  • 21
    Azure support
  • 17
    Always on
  • 17
    Full Index Support
  • 10
    Enterprise manager is fantastic
  • 9
    In-Memory OLTP Engine
  • 2
    Easy to setup and configure
  • 2
    Security is forefront
  • 1
    Great documentation
  • 1
    Faster Than Oracle
  • 1
    Columnstore indexes
  • 1
    Decent management tools
  • 1
    Docker Delivery
  • 1
    Max numar of connection is 14000
  • 163
    Lightweight
  • 135
    Portable
  • 122
    Simple
  • 81
    Sql
  • 29
    Preinstalled on iOS and Android
  • 2
    Free
  • 2
    Tcl integration
  • 1
    Portable A database on my USB 'love it'

Sign up to add or upvote prosMake informed product decisions

Cons of Memcached
Cons of Microsoft SQL Server
Cons of SQLite
  • 2
    Only caches simple types
  • 4
    Expensive Licensing
  • 2
    Microsoft
  • 1
    Data pages is only 8k
  • 1
    Allwayon can loose data in asycronious mode
  • 1
    Replication can loose the data
  • 1
    The maximum number of connections is only 14000 connect
  • 2
    Not for multi-process of multithreaded apps
  • 1
    Needs different binaries for each platform

Sign up to add or upvote consMake informed product decisions

- No public GitHub repository available -
- No public GitHub repository available -

What is Memcached?

Memcached is an in-memory key-value store for small chunks of arbitrary data (strings, objects) from results of database calls, API calls, or page rendering.

What is Microsoft SQL Server?

Microsoft® SQL Server is a database management and analysis system for e-commerce, line-of-business, and data warehousing solutions.

What is SQLite?

SQLite is an embedded SQL database engine. Unlike most other SQL databases, SQLite does not have a separate server process. SQLite reads and writes directly to ordinary disk files. A complete SQL database with multiple tables, indices, triggers, and views, is contained in a single disk file.

Need advice about which tool to choose?Ask the StackShare community!

What companies use Memcached?
What companies use Microsoft SQL Server?
What companies use SQLite?

Sign up to get full access to all the companiesMake informed product decisions

What tools integrate with Memcached?
What tools integrate with Microsoft SQL Server?
What tools integrate with SQLite?

Sign up to get full access to all the tool integrationsMake informed product decisions

Blog Posts

Dec 22 2020 at 9:26PM

Pinterest

Amazon EC2C langMemcached+4
10
2693
Jun 6 2019 at 5:11PM

AppSignal

RedisRubyKafka+9
15
1701
GitHubDockerReact+17
41
37297
GitHubPythonNode.js+47
55
72769
JavaScriptGitHubNode.js+26
20
5023
JavaScriptGitHubPython+42
53
22147
What are some alternatives to Memcached, Microsoft SQL Server, and SQLite?
Redis
Redis is an open source (BSD licensed), in-memory data structure store, used as a database, cache, and message broker. Redis provides data structures such as strings, hashes, lists, sets, sorted sets with range queries, bitmaps, hyperloglogs, geospatial indexes, and streams.
Ehcache
Ehcache is an open source, standards-based cache for boosting performance, offloading your database, and simplifying scalability. It's the most widely-used Java-based cache because it's robust, proven, and full-featured. Ehcache scales from in-process, with one or more nodes, all the way to mixed in-process/out-of-process configurations with terabyte-sized caches.
Varnish
Varnish Cache is a web application accelerator also known as a caching HTTP reverse proxy. You install it in front of any server that speaks HTTP and configure it to cache the contents. Varnish Cache is really, really fast. It typically speeds up delivery with a factor of 300 - 1000x, depending on your architecture.
Hazelcast
With its various distributed data structures, distributed caching capabilities, elastic nature, memcache support, integration with Spring and Hibernate and more importantly with so many happy users, Hazelcast is feature-rich, enterprise-ready and developer-friendly in-memory data grid solution.
MongoDB
MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding.
See all alternatives