It provides a set of natural language analysis tools written in Java. It can take raw human language text input and give the base forms of words, their parts of speech, whether they are names of companies, people, etc., normalize and interpret dates, times, and numeric quantities, mark up the structure of sentences in terms of phrases or word dependencies, and indicate which noun phrases refer to the same entities.
CoreNLP is a tool in the Voice & Audio Models category of a tech stack.
No pros listed yet.
No cons listed yet.
What are some alternatives to CoreNLP?
It provides general-purpose architectures (BERT, GPT-2, RoBERTa, XLM, DistilBert, XLNet…) for Natural Language Understanding (NLU) and Natural Language Generation (NLG) with over 32+ pretrained models in 100+ languages and deep interoperability between TensorFlow 2.0 and PyTorch.
It is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest research, and was designed from day one to be used in real products. It comes with pre-trained statistical models and word vectors, and currently supports tokenization for 49+ languages.
rasa NLU (Natural Language Understanding) is a tool for intent classification and entity extraction. You can think of rasa NLU as a set of high level APIs for building your own language parser using existing NLP and ML libraries.
It is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Target audience is the natural language processing (NLP) and information retrieval (IR) community.
Java, JavaScript, Python are some of the popular tools that integrate with CoreNLP. Here's a list of all 3 tools that integrate with CoreNLP.