You can use it to extract information about people, places, events and much more, mentioned in text documents, news articles or blog posts. You can use it to understand sentiment about your product on social media or parse intent from customer conversations happening in a call center or a messaging app. You can analyze text uploaded in your request or integrate with your document storage on Google Cloud Storage.
Google Cloud Natural Language API is a tool in the Text & Language Models category of a tech stack.
No pros listed yet.
What are some alternatives to Google Cloud Natural Language API?
It provides general-purpose architectures (BERT, GPT-2, RoBERTa, XLM, DistilBert, XLNet…) for Natural Language Understanding (NLU) and Natural Language Generation (NLG) with over 32+ pretrained models in 100+ languages and deep interoperability between TensorFlow 2.0 and PyTorch.
It is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest research, and was designed from day one to be used in real products. It comes with pre-trained statistical models and word vectors, and currently supports tokenization for 49+ languages.
rasa NLU (Natural Language Understanding) is a tool for intent classification and entity extraction. You can think of rasa NLU as a set of high level APIs for building your own language parser using existing NLP and ML libraries.
It is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Target audience is the natural language processing (NLP) and information retrieval (IR) community.
Google Cloud IoT Core are some of the popular tools that integrate with Google Cloud Natural Language API. Here's a list of all 1 tools that integrate with Google Cloud Natural Language API.