What is WebdriverIO and what are its top alternatives?
Top Alternatives to WebdriverIO
- Selenium
Selenium automates browsers. That's it! What you do with that power is entirely up to you. Primarily, it is for automating web applications for testing purposes, but is certainly not limited to just that. Boring web-based administration tasks can (and should!) also be automated as well. ...
- Protractor
Protractor is an end-to-end test framework for Angular and AngularJS applications. Protractor runs tests against your application running in a real browser, interacting with it as a user would. ...
- Puppeteer
Puppeteer is a Node library which provides a high-level API to control headless Chrome over the DevTools Protocol. It can also be configured to use full (non-headless) Chrome. ...
- Nightwatchjs
Nightwatch.js is an easy to use Node.js based End-to-End (E2E) testing solution for browser based apps and websites. It uses the powerful Selenium WebDriver API to perform commands and assertions on DOM elements. ...
- Cypress
Cypress is a front end automated testing application created for the modern web. Cypress is built on a new architecture and runs in the same run-loop as the application being tested. As a result Cypress provides better, faster, and more reliable testing for anything that runs in a browser. Cypress works on any front-end framework or website. ...
- TestCafe
It is a pure node.js end-to-end solution for testing web apps. It takes care of all the stages: starting browsers, running tests, gathering test results and generating reports. ...
- Jest
Jest provides you with multiple layers on top of Jasmine.
- Git
Git is a free and open source distributed version control system designed to handle everything from small to very large projects with speed and efficiency. ...
WebdriverIO alternatives & related posts
- Automates browsers177
- Testing154
- Essential tool for running test automation101
- Record-Playback24
- Remote Control24
- Data crawling8
- Supports end to end testing7
- Easy set up6
- Functional testing6
- The Most flexible monitoring system4
- End to End Testing3
- Easy to integrate with build tools3
- Comparing the performance selenium is faster than jasm2
- Record and playback2
- Compatible with Python2
- Easy to scale2
- Integration Tests2
- Integrated into Selenium-Jupiter framework0
- Flaky tests8
- Slow as needs to make browser (even with no gui)4
- Update browser drivers2
related Selenium posts
When you think about test automation, it’s crucial to make it everyone’s responsibility (not just QA Engineers'). We started with Selenium and Java, but with our platform revolving around Ruby, Elixir and JavaScript, QA Engineers were left alone to automate tests. Cypress was the answer, as we could switch to JS and simply involve more people from day one. There's a downside too, as it meant testing on Chrome only, but that was "good enough" for us + if really needed we can always cover some specific cases in a different way.





In 2012 we made the very difficult decision to entirely re-engineer our existing monolithic LAMP application from the ground up in order to address some growing concerns about it's long term viability as a platform.
Full application re-write is almost always never the answer, because of the risks involved. However the situation warranted drastic action as it was clear that the existing product was going to face severe scaling issues. We felt it better address these sooner rather than later and also take the opportunity to improve the international architecture and also to refactor the database in. order that it better matched the changes in core functionality.
PostgreSQL was chosen for its reputation as being solid ACID compliant database backend, it was available as an offering AWS RDS service which reduced the management overhead of us having to configure it ourselves. In order to reduce read load on the primary database we implemented an Elasticsearch layer for fast and scalable search operations. Synchronisation of these indexes was to be achieved through the use of Sidekiq's Redis based background workers on Amazon ElastiCache. Again the AWS solution here looked to be an easy way to keep our involvement in managing this part of the platform at a minimum. Allowing us to focus on our core business.
Rails ls was chosen for its ability to quickly get core functionality up and running, its MVC architecture and also its focus on Test Driven Development using RSpec and Selenium with Travis CI providing continual integration. We also liked Ruby for its terse, clean and elegant syntax. Though YMMV on that one!
Unicorn was chosen for its continual deployment and reputation as a reliable application server, nginx for its reputation as a fast and stable reverse-proxy. We also took advantage of the Amazon CloudFront CDN here to further improve performance by caching static assets globally.
We tried to strike a balance between having control over management and configuration of our core application with the convenience of being able to leverage AWS hosted services for ancillary functions (Amazon SES , Amazon SQS Amazon Route 53 all hosted securely inside Amazon VPC of course!).
Whilst there is some compromise here with potential vendor lock in, the tasks being performed by these ancillary services are no particularly specialised which should mitigate this risk. Furthermore we have already containerised the stack in our development using Docker environment, and looking to how best to bring this into production - potentially using Amazon EC2 Container Service
- Easy setup9
- Quick tests implementation8
- Flexible6
- Open source5
- Promise support5
- Limited4
related Protractor posts
Currently, we are using Protractor in our project. Since Protractor isn't updated anymore, we are looking for a new tool. The strongest suggestions are WebdriverIO or Puppeteer. Please help me figure out what tool would make the transition fastest and easiest. Please note that Protractor uses its own locator system, and we want the switch to be as simple as possible. Thank you!
Protractor or Cypress for ionic-angular?
We have a huge ionic-angular app with almost 100 pages and 10+ injectables. There are no tests written yet. Before we start, we need some suggestions about the framework. Would you suggest Cypress or Angular's Protractor with Jasmine / Karma for a heavy ionic app with Angular?
- Very well documented10
- Scriptable web browser10
- Promise based6
- Chrome only10
related Puppeteer posts
Currently, we are using Protractor in our project. Since Protractor isn't updated anymore, we are looking for a new tool. The strongest suggestions are WebdriverIO or Puppeteer. Please help me figure out what tool would make the transition fastest and easiest. Please note that Protractor uses its own locator system, and we want the switch to be as simple as possible. Thank you!
I work in a company building web apps with AngularJS. I started using Selenium for tests automation, as I am more familiar with Python. However, I found some difficulties, like the impossibility of using IDs and fixed lists of classes, ending up with using xpaths most, which unfortunately could change with fixes and modifications in the code.
So, I started using Puppeteer, but I am still learning. It seems easier to find elements on the webpage, even if the creation and managing of arrays of elements seem to be a little bit more complicated than in Selenium, but it could be also due to my poor knowledge of JavaScript.
Any comments on this comparison and also on comparisons with similar tools are welcome! :)
Nightwatchjs
- Open source3
- Testing2
- Automates browsers2
- Better cross browser (use selenium)1
- Cross-Browser Testing1
- Multiple Browser Support1
- Parallel Test Running1
- No automatic wait2
- Less flexibility1
- Limited native mobile app support1
- Limited browser support1
- Configuration complexity1
related Nightwatchjs posts
For our digital QA organization to support a complex hybrid monolith/microservice architecture, our team took on the lofty goal of building out a commonized UI test automation framework. One of the primary requisites included a technical minimalist threshold such that an engineer or analyst with fundamental knowledge of JavaScript could automate their tests with greater ease. Just to list a few: - Nightwatchjs - Selenium - Cucumber - GitHub - Go.CD - Docker - ExpressJS - React - PostgreSQL
With this structure, we're able to combine the automation efforts of each team member into a centralized repository while also providing new relevant metrics to business owners.
For our internal team and collaboration panel we use Nuxt.js (with TypeScript that is transpiled into ES6), Webpack and npm. We enjoy the opinionated nature of Nuxt.js over vanilla Vue.js, as we would end up using all of the components Nuxt.js incorporates anyways and we can adhere to the conventions setup by the Nuxt.js project, which allows us to get better support in case we run into any dead ends. Webpack allows us to create reproducable builds and also debug our application with hot reloads, which greately increased the pace at which we are able to perform and test changes. We also incorporated a lot of testing (ESLint, Chai, Jasmine, Nightwatchjs) into our pipelines and can trigger those jobs through GitLab CI. All packages are fetched through npm, so that we can keep our git repositories slim and are notified of new updates aswell as reported security flaws.
Cypress
- Open source29
- Great documentation22
- Simple usage20
- Fast18
- Cross Browser testing10
- Easy us with CI9
- Npm install cypress only5
- Good for beginner automation engineers2
- Cypress is weak at cross-browser testing21
- Switch tabs : Cypress can'nt support14
- No iFrame support12
- No page object support9
- No multiple domain support9
- No file upload support8
- No support for multiple tab control8
- No xPath support8
- No support for Safari7
- Cypress doesn't support native app7
- Re-run failed tests retries not supported yet7
- No support for multiple browser control7
- $20/user/thread for reports5
- Adobe4
- Using a non-standard automation protocol4
- Not freeware4
- No 'WD wire protocol' support3
related Cypress posts
When you think about test automation, it’s crucial to make it everyone’s responsibility (not just QA Engineers'). We started with Selenium and Java, but with our platform revolving around Ruby, Elixir and JavaScript, QA Engineers were left alone to automate tests. Cypress was the answer, as we could switch to JS and simply involve more people from day one. There's a downside too, as it meant testing on Chrome only, but that was "good enough" for us + if really needed we can always cover some specific cases in a different way.
We are in the process of adopting Next.js as our React framework and using Storybook to help build our React components in isolation. This new part of our frontend is written in TypeScript, and we use Emotion for CSS/styling. For delivering data, we use GraphQL and Apollo. Jest, Percy, and Cypress are used for testing.
- Cross-browser testing8
- Open source4
- Easy setup/installation4
- Built in waits4
- UI End to End testing3
- Supports Devices without extra software/package2
- Both client and server side debug1
- No longer free9
- Open source36
- Mock by default makes testing much simpler32
- Testing React Native Apps23
- Parallel test running20
- Fast16
- Bundled with JSDOM to enable DOM testing13
- Mock by default screws up your classes, breaking tests8
- Out of the box code coverage7
- Promise support7
- One stop shop for unit testing6
- Great documentation3
- Assert Library Included2
- Built in watch option with interactive filtering menu1
- Preset support1
- Can be used for BDD0
- Karma0
- Documentation4
- Ambiguous configuration4
- Difficult3
- Many bugs still not fixed months/years after reporting2
- Multiple error messages for same error2
- Difficult to run single test/describe/file2
- Ambiguous2
- Bugged2
- BeforeAll timing out makes all passing tests fail1
- Slow1
- Reporter is too general1
- Unstable1
- Bad docs1
- Still does't support .mjs files natively1
- Can't fail beforeAll to abort tests1
- Interaction with watch mode on terminal0
related Jest posts





Our whole Vue.js frontend stack (incl. SSR) consists of the following tools:
- Nuxt.js consisting of Vue CLI, Vue Router, vuex, Webpack and Sass (Bundler for HTML5, CSS 3), Babel (Transpiler for JavaScript),
- Vue Styleguidist as our style guide and pool of developed Vue.js components
- Vuetify as Material Component Framework (for fast app development)
- TypeScript as programming language
- Apollo / GraphQL (incl. GraphiQL) for data access layer (https://apollo.vuejs.org/)
- ESLint, TSLint and Prettier for coding style and code analyzes
- Jest as testing framework
- Google Fonts and Font Awesome for typography and icon toolkit
- NativeScript-Vue for mobile development
The main reason we have chosen Vue.js over React and AngularJS is related to the following artifacts:
- Empowered HTML. Vue.js has many similar approaches with Angular. This helps to optimize HTML blocks handling with the use of different components.
- Detailed documentation. Vue.js has very good documentation which can fasten learning curve for developers.
- Adaptability. It provides a rapid switching period from other frameworks. It has similarities with Angular and React in terms of design and architecture.
- Awesome integration. Vue.js can be used for both building single-page applications and more difficult web interfaces of apps. Smaller interactive parts can be easily integrated into the existing infrastructure with no negative effect on the entire system.
- Large scaling. Vue.js can help to develop pretty large reusable templates.
- Tiny size. Vue.js weights around 20KB keeping its speed and flexibility. It allows reaching much better performance in comparison to other frameworks.
I'm working as one of the engineering leads in RunaHR. As our platform is a Saas, we thought It'd be good to have an API (We chose Ruby and Rails for this) and a SPA (built with React and Redux ) connected. We started the SPA with Create React App since It's pretty easy to start.
We use Jest as the testing framework and react-testing-library to test React components. In Rails we make tests using RSpec.
Our main database is PostgreSQL, but we also use MongoDB to store some type of data. We started to use Redis for cache and other time sensitive operations.
We have a couple of extra projects: One is an Employee app built with React Native and the other is an internal back office dashboard built with Next.js for the client and Python in the backend side.
Since we have different frontend apps we have found useful to have Bit to document visual components and utils in JavaScript.
- Distributed version control system1.4K
- Efficient branching and merging1.1K
- Fast959
- Open source845
- Better than svn726
- Great command-line application368
- Simple306
- Free291
- Easy to use232
- Does not require server222
- Distributed28
- Small & Fast23
- Feature based workflow18
- Staging Area15
- Most wide-spread VSC13
- Disposable Experimentation11
- Role-based codelines11
- Frictionless Context Switching7
- Data Assurance6
- Efficient5
- Just awesome4
- Easy branching and merging3
- Github integration3
- Compatible2
- Possible to lose history and commits2
- Flexible2
- Team Integration1
- Easy1
- Light1
- Fast, scalable, distributed revision control system1
- Rebase supported natively; reflog; access to plumbing1
- Flexible, easy, Safe, and fast1
- CLI is great, but the GUI tools are awesome1
- It's what you do1
- Phinx0
- Hard to learn16
- Inconsistent command line interface11
- Easy to lose uncommitted work9
- Worst documentation ever possibly made8
- Awful merge handling5
- Unexistent preventive security flows3
- Rebase hell3
- Ironically even die-hard supporters screw up badly2
- When --force is disabled, cannot rebase2
- Doesn't scale for big data1
related Git posts
Our whole DevOps stack consists of the following tools:
- GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
- Respectively Git as revision control system
- SourceTree as Git GUI
- Visual Studio Code as IDE
- CircleCI for continuous integration (automatize development process)
- Prettier / TSLint / ESLint as code linter
- SonarQube as quality gate
- Docker as container management (incl. Docker Compose for multi-container application management)
- VirtualBox for operating system simulation tests
- Kubernetes as cluster management for docker containers
- Heroku for deploying in test environments
- nginx as web server (preferably used as facade server in production environment)
- SSLMate (using OpenSSL) for certificate management
- Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
- PostgreSQL as preferred database system
- Redis as preferred in-memory database/store (great for caching)
The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:
- Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
- Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
- Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
- Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
- Scalability: All-in-one framework for distributed systems.
- Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).
It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up
or vagrant reload
we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.
I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up
, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.
We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.
If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.
The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).
Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.