StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Utilities
  3. Business Intelligence
  4. Business Intelligence
  5. Activeloop Deep Lake vs Azure Synapse

Activeloop Deep Lake vs Azure Synapse

OverviewComparisonAlternatives

Overview

Azure Synapse
Azure Synapse
Stacks104
Followers230
Votes10
Activeloop Deep Lake
Activeloop Deep Lake
Stacks1
Followers0
Votes0
GitHub Stars8.9K
Forks691

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Detailed Comparison

Azure Synapse
Azure Synapse
Activeloop Deep Lake
Activeloop Deep Lake

It is an analytics service that brings together enterprise data warehousing and Big Data analytics. It gives you the freedom to query data on your terms, using either serverless on-demand or provisioned resources—at scale. It brings these two worlds together with a unified experience to ingest, prepare, manage, and serve data for immediate BI and machine learning needs.

It retains all the features you love from data lakes, with one key twist. Deep Lake is explicitly built for deep learning workflows with image, audio, and video datasets. This saves time on building complex data infrastructure, & enables shipping AI models into production much faster.

Complete T-SQL based analytics – Generally Available; Deeply integrated Apache Spark; Hybrid data integration; Unified user experience
Storage agnostic API; Compressed storage; Lazy Numpy-like indexing; Dataset version control; Integrations with deep learning frameworks; Distributed transformations; 100+ most-popular image, video, and audio datasets available in seconds; Instant visualization support in Activeloop platform
Statistics
GitHub Stars
-
GitHub Stars
8.9K
GitHub Forks
-
GitHub Forks
691
Stacks
104
Stacks
1
Followers
230
Followers
0
Votes
10
Votes
0
Pros & Cons
Pros
  • 4
    ETL
  • 3
    Security
  • 2
    Serverless
  • 1
    Doesn't support cross database query
Cons
  • 1
    Concurrency
  • 1
    Dictionary Size Limitation - CCI
No community feedback yet
Integrations
No integrations available
TensorFlow
TensorFlow
Python
Python
PyTorch
PyTorch
Amazon S3
Amazon S3

What are some alternatives to Azure Synapse, Activeloop Deep Lake?

Metabase

Metabase

It is an easy way to generate charts and dashboards, ask simple ad hoc queries without using SQL, and see detailed information about rows in your Database. You can set it up in under 5 minutes, and then give yourself and others a place to ask simple questions and understand the data your application is generating.

Google BigQuery

Google BigQuery

Run super-fast, SQL-like queries against terabytes of data in seconds, using the processing power of Google's infrastructure. Load data with ease. Bulk load your data using Google Cloud Storage or stream it in. Easy access. Access BigQuery by using a browser tool, a command-line tool, or by making calls to the BigQuery REST API with client libraries such as Java, PHP or Python.

Apache Spark

Apache Spark

Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.

Amazon Redshift

Amazon Redshift

It is optimized for data sets ranging from a few hundred gigabytes to a petabyte or more and costs less than $1,000 per terabyte per year, a tenth the cost of most traditional data warehousing solutions.

TensorFlow

TensorFlow

TensorFlow is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API.

Qubole

Qubole

Qubole is a cloud based service that makes big data easy for analysts and data engineers.

Presto

Presto

Distributed SQL Query Engine for Big Data

Amazon EMR

Amazon EMR

It is used in a variety of applications, including log analysis, data warehousing, machine learning, financial analysis, scientific simulation, and bioinformatics.

Amazon Athena

Amazon Athena

Amazon Athena is an interactive query service that makes it easy to analyze data in Amazon S3 using standard SQL. Athena is serverless, so there is no infrastructure to manage, and you pay only for the queries that you run.

scikit-learn

scikit-learn

scikit-learn is a Python module for machine learning built on top of SciPy and distributed under the 3-Clause BSD license.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase