What is gRPC and what are its top alternatives?
Top Alternatives to gRPC
- GraphQL
GraphQL is a data query language and runtime designed and used at Facebook to request and deliver data to mobile and web apps since 2012. ...
- RabbitMQ
RabbitMQ gives your applications a common platform to send and receive messages, and your messages a safe place to live until received. ...
- Kafka
Kafka is a distributed, partitioned, replicated commit log service. It provides the functionality of a messaging system, but with a unique design. ...
- REST
An architectural style for developing web services. A distributed system framework that uses Web protocols and technologies. ...
- MQTT
It was designed as an extremely lightweight publish/subscribe messaging transport. It is useful for connections with remote locations where a small code footprint is required and/or network bandwidth is at a premium. ...
- SignalR
SignalR allows bi-directional communication between server and client. Servers can now push content to connected clients instantly as it becomes available. SignalR supports Web Sockets, and falls back to other compatible techniques for older browsers. SignalR includes APIs for connection management (for instance, connect and disconnect events), grouping connections, and authorization. ...
- Protobuf
Protocol buffers are Google's language-neutral, platform-neutral, extensible mechanism for serializing structured data – think XML, but smaller, faster, and simpler. ...
- JSON-RPC
It is a very simple protocol, defining only a few data types and commands. It allows for notifications (data sent to the server that does not require a response) and for multiple calls to be sent to the server which may be answered out of order. ...
gRPC alternatives & related posts
- Schemas defined by the requests made by the user74
- Will replace RESTful interfaces62
- The future of API's60
- The future of databases48
- Self-documenting12
- Get many resources in a single request11
- Query Language5
- Ask for what you need, get exactly that5
- Fetch different resources in one request3
- Evolve your API without versions3
- Type system3
- Easy setup2
- GraphiQL2
- Ease of client creation2
- Good for apps that query at build time. (SSR/Gatsby)1
- Backed by Facebook1
- Easy to learn1
- "Open" document1
- Better versioning1
- Standard1
- 1. Describe your data1
- Fast prototyping1
- Hard to migrate from GraphQL to another technology4
- More code to type.4
- Takes longer to build compared to schemaless.2
- All the pros sound like NFT pitches1
- Works just like any other API at runtime1
related GraphQL posts
I just finished the very first version of my new hobby project: #MovieGeeks. It is a minimalist online movie catalog for you to save the movies you want to see and for rating the movies you already saw. This is just the beginning as I am planning to add more features on the lines of sharing and discovery
For the #BackEnd I decided to use Node.js , GraphQL and MongoDB:
Node.js has a huge community so it will always be a safe choice in terms of libraries and finding solutions to problems you may have
GraphQL because I needed to improve my skills with it and because I was never comfortable with the usual REST approach. I believe GraphQL is a better option as it feels more natural to write apis, it improves the development velocity, by definition it fixes the over-fetching and under-fetching problem that is so common on REST apis, and on top of that, the community is getting bigger and bigger.
MongoDB was my choice for the database as I already have a lot of experience working on it and because, despite of some bad reputation it has acquired in the last months, I still believe it is a powerful database for at least a very long list of use cases such as the one I needed for my website
When I joined NYT there was already broad dissatisfaction with the LAMP (Linux Apache HTTP Server MySQL PHP) Stack and the front end framework, in particular. So, I wasn't passing judgment on it. I mean, LAMP's fine, you can do good work in LAMP. It's a little dated at this point, but it's not ... I didn't want to rip it out for its own sake, but everyone else was like, "We don't like this, it's really inflexible." And I remember from being outside the company when that was called MIT FIVE when it had launched. And been observing it from the outside, and I was like, you guys took so long to do that and you did it so carefully, and yet you're not happy with your decisions. Why is that? That was more the impetus. If we're going to do this again, how are we going to do it in a way that we're gonna get a better result?
So we're moving quickly away from LAMP, I would say. So, right now, the new front end is React based and using Apollo. And we've been in a long, protracted, gradual rollout of the core experiences.
React is now talking to GraphQL as a primary API. There's a Node.js back end, to the front end, which is mainly for server-side rendering, as well.
Behind there, the main repository for the GraphQL server is a big table repository, that we call Bodega because it's a convenience store. And that reads off of a Kafka pipeline.
- It's fast and it works with good metrics/monitoring232
- Ease of configuration79
- I like the admin interface58
- Easy to set-up and start with50
- Durable20
- Standard protocols18
- Intuitive work through python18
- Written primarily in Erlang10
- Simply superb8
- Completeness of messaging patterns6
- Scales to 1 million messages per second3
- Reliable3
- Better than most traditional queue based message broker2
- Distributed2
- Supports MQTT2
- Supports AMQP2
- Inubit Integration1
- Open-source1
- Delayed messages1
- Runs on Open Telecom Platform1
- High performance1
- Reliability1
- Clusterable1
- Clear documentation with different scripting language1
- Great ui1
- Better routing system1
- Too complicated cluster/HA config and management9
- Needs Erlang runtime. Need ops good with Erlang runtime6
- Configuration must be done first, not by your code5
- Slow4
related RabbitMQ posts
As Sentry runs throughout the day, there are about 50 different offline tasks that we execute—anything from “process this event, pretty please” to “send all of these cool people some emails.” There are some that we execute once a day and some that execute thousands per second.
Managing this variety requires a reliably high-throughput message-passing technology. We use Celery's RabbitMQ implementation, and we stumbled upon a great feature called Federation that allows us to partition our task queue across any number of RabbitMQ servers and gives us the confidence that, if any single server gets backlogged, others will pitch in and distribute some of the backlogged tasks to their consumers.
#MessageQueue
Hi, I am building an enhanced web-conferencing app that will have a voice/video call, live chats, live notifications, live discussions, screen sharing, etc features. Ref: Zoom.
I need advise finalizing the tech stack for this app. I am considering below tech stack:
- Frontend: React
- Backend: Node.js
- Database: MongoDB
- IAAS: #AWS
- Containers & Orchestration: Docker / Kubernetes
- DevOps: GitLab, Terraform
- Brokers: Redis / RabbitMQ
I need advice at the platform level as to what could be considered to support concurrent video streaming seamlessly.
Also, please suggest what could be a better tech stack for my app?
#SAAS #VideoConferencing #WebAndVideoConferencing #zoom #stack
Kafka
- High-throughput126
- Distributed119
- Scalable91
- High-Performance85
- Durable65
- Publish-Subscribe37
- Simple-to-use19
- Open source18
- Written in Scala and java. Runs on JVM11
- Message broker + Streaming system8
- KSQL4
- Robust4
- Avro schema integration4
- Suport Multiple clients3
- Partioned, replayable log2
- Flexible1
- Extremely good parallelism constructs1
- Fun1
- Simple publisher / multi-subscriber model1
- Non-Java clients are second-class citizens31
- Needs Zookeeper28
- Operational difficulties8
- Terrible Packaging3
related Kafka posts
The algorithms and data infrastructure at Stitch Fix is housed in #AWS. Data acquisition is split between events flowing through Kafka, and periodic snapshots of PostgreSQL DBs. We store data in an Amazon S3 based data warehouse. Apache Spark on Yarn is our tool of choice for data movement and #ETL. Because our storage layer (s3) is decoupled from our processing layer, we are able to scale our compute environment very elastically. We have several semi-permanent, autoscaling Yarn clusters running to serve our data processing needs. While the bulk of our compute infrastructure is dedicated to algorithmic processing, we also implemented Presto for adhoc queries and dashboards.
Beyond data movement and ETL, most #ML centric jobs (e.g. model training and execution) run in a similarly elastic environment as containers running Python and R code on Amazon EC2 Container Service clusters. The execution of batch jobs on top of ECS is managed by Flotilla, a service we built in house and open sourced (see https://github.com/stitchfix/flotilla-os).
At Stitch Fix, algorithmic integrations are pervasive across the business. We have dozens of data products actively integrated systems. That requires serving layer that is robust, agile, flexible, and allows for self-service. Models produced on Flotilla are packaged for deployment in production using Khan, another framework we've developed internally. Khan provides our data scientists the ability to quickly productionize those models they've developed with open source frameworks in Python 3 (e.g. PyTorch, sklearn), by automatically packaging them as Docker containers and deploying to Amazon ECS. This provides our data scientist a one-click method of getting from their algorithms to production. We then integrate those deployments into a service mesh, which allows us to A/B test various implementations in our product.
For more info:
- Our Algorithms Tour: https://algorithms-tour.stitchfix.com/
- Our blog: https://multithreaded.stitchfix.com/blog/
- Careers: https://multithreaded.stitchfix.com/careers/
#DataScience #DataStack #Data
As we've evolved or added additional infrastructure to our stack, we've biased towards managed services. Most new backing stores are Amazon RDS instances now. We do use self-managed PostgreSQL with TimescaleDB for time-series data—this is made HA with the use of Patroni and Consul.
We also use managed Amazon ElastiCache instances instead of spinning up Amazon EC2 instances to run Redis workloads, as well as shifting to Amazon Kinesis instead of Kafka.
related REST posts
- Varying levels of Quality of Service to fit a range of3
- Lightweight with a relatively small data footprint2
- Very easy to configure and use with open source tools2
- Easy to configure in an unsecure manner1
related MQTT posts
Kindly suggest the best tool for generating 10Mn+ concurrent user load. The tool must support MQTT traffic, REST API, support to interfaces such as Kafka, websockets, persistence HTTP connection, auth type support to assess the support /coverage.
The tool can be integrated into CI pipelines like Azure Pipelines, GitHub, and Jenkins.
Hi Marc,
For the com part, depending of more details not provided, i'd use SSE, OR i'd run either Mosquitto or RabbitMQ running on Amazon EC2 instances and leverage MQTT or amqp 's subscribe/publish features with my users running mqtt or amqp clients (tcp or websockets) somehow. (publisher too.. you don't say how and who gets to update the document(s).
I find "a ton of end users", depending on how you define a ton (1k users ;) ?) and how frequent document updates are, that can mean a ton of ressources, can't cut it at some point, even using SSE
how many, how big, how persistant do the document(s) have to be ? Db-wise,can't say for lack of details and context, yeah could also be Redis, any RDBMS or nosql or even static json files stored on an Amazon S3 bucket .. anything really
Good luck!
SignalR
- Supports .NET server29
- Real-time22
- Free16
- Fallback to SSE, forever frame, long polling15
- WebSockets14
- Simple10
- Open source8
- JSON8
- Ease of use7
- Cool5
- Azure0
- Expertise hard to get2
- Requires jQuery2
- Weak iOS and Android support1
- Big differences between ASP.NET and Core versions1
related SignalR posts
We need to interact from several different Web applications (remote) to a client-side application (.exe in .NET Framework, Windows.Console under our controlled environment). From the web applications, we need to send and receive data and invoke methods to client-side .exe on javascript events like users onclick. SignalR is one of the .Net alternatives to do that, but it adds overhead for what we need. Is it better to add SignalR at both client-side application and remote web application, or use gRPC as it sounds lightest and is multilingual?
SignalR or gRPC are always sending and receiving data on the client-side (from browser to .exe and back to browser). And web application is used for graphical visualization of data to the user. There is no need for local .exe to send or interact with remote web API. Which architecture or framework do you suggest to use in this case?