Alternatives to Laravel Forge logo

Alternatives to Laravel Forge

Envoyer, Runcloud, ServerPilot, Vapor, and Docker are the most popular alternatives and competitors to Laravel Forge.
155
161
+ 1
3

What is Laravel Forge and what are its top alternatives?

Provision, host, and deploy PHP applications on AWS, DigitalOcean, and Linode.
Laravel Forge is a tool in the Deployment as a Service category of a tech stack.
Laravel Forge is an open source tool with GitHub stars and GitHub forks. Here’s a link to Laravel Forge's open source repository on GitHub

Top Alternatives to Laravel Forge

  • Envoyer

    Envoyer

    Envoyer deploys your PHP applications with zero downtime. Just push your code, and let Envoyer deliver your application to one or many servers without interrupting a single customer. In this series, we'll discuss each feature of Envoyer, demonstrating how to use them with a sample project. ...

  • Runcloud

    Runcloud

    SaaS based PHP cloud server control panel. Support Digital Ocean, Linode, AWS, Vultr, Azure and other custom VPS. GIT deployment webhook and easiest control panel to manage Laravel, Cake, Symphony or WordPress. ...

  • ServerPilot

    ServerPilot

    It is a SaaS platform for hosting PHP websites on Ubuntu servers. You can think of it as a modern, centralized hosting control panel. Manage all servers and sites through a single control panel or automate using our API. ...

  • Vapor

    Vapor

    Vapor is the first true web framework for Swift. It provides a beautifully expressive foundation for your app without tying you to any single server implementation. ...

  • Docker

    Docker

    The Docker Platform is the industry-leading container platform for continuous, high-velocity innovation, enabling organizations to seamlessly build and share any application — from legacy to what comes next — and securely run them anywhere ...

  • Heroku

    Heroku

    Heroku is a cloud application platform – a new way of building and deploying web apps. Heroku lets app developers spend 100% of their time on their application code, not managing servers, deployment, ongoing operations, or scaling. ...

  • DigitalOcean

    DigitalOcean

    We take the complexities out of cloud hosting by offering blazing fast, on-demand SSD cloud servers, straightforward pricing, a simple API, and an easy-to-use control panel. ...

  • Octopus Deploy

    Octopus Deploy

    Octopus Deploy helps teams to manage releases, automate deployments, and operate applications with automated runbooks. It's free for small teams. ...

Laravel Forge alternatives & related posts

Envoyer logo

Envoyer

44
54
2
A brand new way to deploy PHP and Laravel applications with zero downtime
44
54
+ 1
2
PROS OF ENVOYER
CONS OF ENVOYER
    No cons available

    related Envoyer posts

    Runcloud logo

    Runcloud

    14
    34
    0
    PHP web application & server management panel
    14
    34
    + 1
    0
    PROS OF RUNCLOUD
      No pros available
      CONS OF RUNCLOUD
        No cons available

        related Runcloud posts

        ServerPilot logo

        ServerPilot

        19
        23
        0
        The best way to run WordPress and PHP sites
        19
        23
        + 1
        0
        PROS OF SERVERPILOT
          No pros available
          CONS OF SERVERPILOT
            No cons available

            related ServerPilot posts

            related Vapor posts

            related Docker posts

            Simon Reymann
            Senior Fullstack Developer at QUANTUSflow Software GmbH · | 27 upvotes · 1.8M views

            Our whole DevOps stack consists of the following tools:

            • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
            • Respectively Git as revision control system
            • SourceTree as Git GUI
            • Visual Studio Code as IDE
            • CircleCI for continuous integration (automatize development process)
            • Prettier / TSLint / ESLint as code linter
            • SonarQube as quality gate
            • Docker as container management (incl. Docker Compose for multi-container application management)
            • VirtualBox for operating system simulation tests
            • Kubernetes as cluster management for docker containers
            • Heroku for deploying in test environments
            • nginx as web server (preferably used as facade server in production environment)
            • SSLMate (using OpenSSL) for certificate management
            • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
            • PostgreSQL as preferred database system
            • Redis as preferred in-memory database/store (great for caching)

            The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

            • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
            • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
            • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
            • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
            • Scalability: All-in-one framework for distributed systems.
            • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
            See more
            Tymoteusz Paul
            Devops guy at X20X Development LTD · | 21 upvotes · 3.8M views

            Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

            It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

            I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

            We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

            If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

            The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

            Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

            See more

            related Heroku posts

            Russel Werner
            Lead Engineer at StackShare · | 29 upvotes · 1.3M views

            StackShare Feed is built entirely with React, Glamorous, and Apollo. One of our objectives with the public launch of the Feed was to enable a Server-side rendered (SSR) experience for our organic search traffic. When you visit the StackShare Feed, and you aren't logged in, you are delivered the Trending feed experience. We use an in-house Node.js rendering microservice to generate this HTML. This microservice needs to run and serve requests independent of our Rails web app. Up until recently, we had a mono-repo with our Rails and React code living happily together and all served from the same web process. In order to deploy our SSR app into a Heroku environment, we needed to split out our front-end application into a separate repo in GitHub. The driving factor in this decision was mostly due to limitations imposed by Heroku specifically with how processes can't communicate with each other. A new SSR app was created in Heroku and linked directly to the frontend repo so it stays in-sync with changes.

            Related to this, we need a way to "deploy" our frontend changes to various server environments without building & releasing the entire Ruby application. We built a hybrid Amazon S3 Amazon CloudFront solution to host our Webpack bundles. A new CircleCI script builds the bundles and uploads them to S3. The final step in our rollout is to update some keys in Redis so our Rails app knows which bundles to serve. The result of these efforts were significant. Our frontend team now moves independently of our backend team, our build & release process takes only a few minutes, we are now using an edge CDN to serve JS assets, and we have pre-rendered React pages!

            #StackDecisionsLaunch #SSR #Microservices #FrontEndRepoSplit

            See more
            Simon Reymann
            Senior Fullstack Developer at QUANTUSflow Software GmbH · | 27 upvotes · 1.8M views

            Our whole DevOps stack consists of the following tools:

            • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
            • Respectively Git as revision control system
            • SourceTree as Git GUI
            • Visual Studio Code as IDE
            • CircleCI for continuous integration (automatize development process)
            • Prettier / TSLint / ESLint as code linter
            • SonarQube as quality gate
            • Docker as container management (incl. Docker Compose for multi-container application management)
            • VirtualBox for operating system simulation tests
            • Kubernetes as cluster management for docker containers
            • Heroku for deploying in test environments
            • nginx as web server (preferably used as facade server in production environment)
            • SSLMate (using OpenSSL) for certificate management
            • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
            • PostgreSQL as preferred database system
            • Redis as preferred in-memory database/store (great for caching)

            The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

            • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
            • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
            • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
            • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
            • Scalability: All-in-one framework for distributed systems.
            • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
            See more

            related DigitalOcean posts

            I am going to build a backend which will serve my React site. It will need to interact with a PostgreSQL database where it will store and read users and create and use JSON Web Token for authenticating HTTP requests. I know EF core has good migration tooling, can Go provide the same or better? I am a one man team and I'll be hosting this either on Heroku or DigitalOcean.

            See more
            Rajat Jain
            Devops Engineer at Aurochssoftware · | 1 upvote · 149.2K views

            Building my skill set to become Devops Engineer-Tool chain: Amazon EC2, Amazon S3, Bitbucket, GitLab, PyCharm, Ubuntu, DigitalOcean, Docker, Git

            IT engineer with more than 6 months of experience in startups with focus on DevOps, Cloud infrastructure & Testing (QA). I had set up CI process, monitoring and infrastructure on dev/test (lower) environments

            See more
            Octopus Deploy logo

            Octopus Deploy

            297
            312
            113
            A single place to release, deploy and operate your software
            297
            312
            + 1
            113

            related Octopus Deploy posts

            Oliver Burn

            We recently added new APIs to Jira to associate information about Builds and Deployments to Jira issues.

            The new APIs were developed using a spec-first API approach for speed and sanity. The details of this approach are described in this blog post, and we relied on using Swagger and associated tools like Swagger UI.

            A new service was created for managing the data. It provides a REST API for external use, and an internal API based on GraphQL. The service is built using Kotlin for increased developer productivity and happiness, and the Spring-Boot framework. PostgreSQL was chosen for the persistence layer, as we have non-trivial requirements that cannot be easily implemented on top of a key-value store.

            The front-end has been built using React and querying the back-end service using an internal GraphQL API. We have plans of providing a public GraphQL API in the future.

            New Jira Integrations: Bitbucket CircleCI AWS CodePipeline Octopus Deploy jFrog Azure Pipelines

            See more