StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Utilities
  3. Background Jobs
  4. Stream Processing
  5. Hazelcast vs Storm

Hazelcast vs Storm

OverviewComparisonAlternatives

Overview

Apache Storm
Apache Storm
Stacks208
Followers282
Votes25
GitHub Stars6.7K
Forks4.1K
Hazelcast
Hazelcast
Stacks427
Followers474
Votes59
GitHub Stars6.4K
Forks1.9K

Hazelcast vs Storm: What are the differences?

What is Hazelcast? Clustering and highly scalable data distribution platform for Java. With its various distributed data structures, distributed caching capabilities, elastic nature, memcache support, integration with Spring and Hibernate and more importantly with so many happy users, Hazelcast is feature-rich, enterprise-ready and developer-friendly in-memory data grid solution.

What is Storm? Distributed and fault-tolerant realtime computation. Apache Storm is a free and open source distributed realtime computation system. Storm makes it easy to reliably process unbounded streams of data, doing for realtime processing what Hadoop did for batch processing. Storm has many use cases: realtime analytics, online machine learning, continuous computation, distributed RPC, ETL, and more. Storm is fast: a benchmark clocked it at over a million tuples processed per second per node. It is scalable, fault-tolerant, guarantees your data will be processed, and is easy to set up and operate.

Hazelcast can be classified as a tool in the "In-Memory Databases" category, while Storm is grouped under "Stream Processing".

Some of the features offered by Hazelcast are:

  • Distributed implementations of java.util.{Queue, Set, List, Map}
  • Distributed implementation of java.util.concurrent.locks.Lock
  • Distributed implementation of java.util.concurrent.ExecutorService

On the other hand, Storm provides the following key features:

  • Storm integrates with the queueing and database technologies you already use
  • Simple API
  • Scalable

"High Availibility" is the primary reason why developers consider Hazelcast over the competitors, whereas "Flexible" was stated as the key factor in picking Storm.

Hazelcast and Storm are both open source tools. It seems that Storm with 5.73K GitHub stars and 3.9K forks on GitHub has more adoption than Hazelcast with 3.15K GitHub stars and 1.15K GitHub forks.

According to the StackShare community, Storm has a broader approval, being mentioned in 37 company stacks & 8 developers stacks; compared to Hazelcast, which is listed in 25 company stacks and 15 developer stacks.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Detailed Comparison

Apache Storm
Apache Storm
Hazelcast
Hazelcast

Apache Storm is a free and open source distributed realtime computation system. Storm makes it easy to reliably process unbounded streams of data, doing for realtime processing what Hadoop did for batch processing. Storm has many use cases: realtime analytics, online machine learning, continuous computation, distributed RPC, ETL, and more. Storm is fast: a benchmark clocked it at over a million tuples processed per second per node. It is scalable, fault-tolerant, guarantees your data will be processed, and is easy to set up and operate.

With its various distributed data structures, distributed caching capabilities, elastic nature, memcache support, integration with Spring and Hibernate and more importantly with so many happy users, Hazelcast is feature-rich, enterprise-ready and developer-friendly in-memory data grid solution.

Storm integrates with the queueing and database technologies you already use;Simple API;Scalable;Fault tolerant;Guarantees data processing;Use with any language;Easy to deploy and operate;Free and open source
Distributed implementations of java.util.{Queue, Set, List, Map};Distributed implementation of java.util.concurrent.locks.Lock;Distributed implementation of java.util.concurrent.ExecutorService;Distributed MultiMap for one-to-many relationships;Distributed Topic for publish/subscribe messaging;Synchronous (write-through) and asynchronous (write-behind) persistence;Transaction support;Socket level encryption support for secure clusters;Second level cache provider for Hibernate;Monitoring and management of the cluster via JMX;Dynamic HTTP session clustering;Support for cluster info and membership events;Dynamic discovery, scaling, partitioning with backups and fail-over
Statistics
GitHub Stars
6.7K
GitHub Stars
6.4K
GitHub Forks
4.1K
GitHub Forks
1.9K
Stacks
208
Stacks
427
Followers
282
Followers
474
Votes
25
Votes
59
Pros & Cons
Pros
  • 10
    Flexible
  • 6
    Easy setup
  • 4
    Event Processing
  • 3
    Clojure
  • 2
    Real Time
Pros
  • 11
    High Availibility
  • 6
    Distributed compute
  • 6
    Distributed Locking
  • 5
    Sharding
  • 4
    Load balancing
Cons
  • 4
    License needed for SSL
Integrations
No integrations available
Java
Java
Spring
Spring

What are some alternatives to Apache Storm, Hazelcast?

Redis

Redis

Redis is an open source (BSD licensed), in-memory data structure store, used as a database, cache, and message broker. Redis provides data structures such as strings, hashes, lists, sets, sorted sets with range queries, bitmaps, hyperloglogs, geospatial indexes, and streams.

Apache NiFi

Apache NiFi

An easy to use, powerful, and reliable system to process and distribute data. It supports powerful and scalable directed graphs of data routing, transformation, and system mediation logic.

Aerospike

Aerospike

Aerospike is an open-source, modern database built from the ground up to push the limits of flash storage, processors and networks. It was designed to operate with predictable low latency at high throughput with uncompromising reliability – both high availability and ACID guarantees.

MemSQL

MemSQL

MemSQL converges transactions and analytics for sub-second data processing and reporting. Real-time businesses can build robust applications on a simple and scalable infrastructure that complements and extends existing data pipelines.

Apache Ignite

Apache Ignite

It is a memory-centric distributed database, caching, and processing platform for transactional, analytical, and streaming workloads delivering in-memory speeds at petabyte scale

SAP HANA

SAP HANA

It is an application that uses in-memory database technology that allows the processing of massive amounts of real-time data in a short time. The in-memory computing engine allows it to process data stored in RAM as opposed to reading it from a disk.

VoltDB

VoltDB

VoltDB is a fundamental redesign of the RDBMS that provides unparalleled performance and scalability on bare-metal, virtualized and cloud infrastructures. VoltDB is a modern in-memory architecture that supports both SQL + Java with data durability and fault tolerance.

Confluent

Confluent

It is a data streaming platform based on Apache Kafka: a full-scale streaming platform, capable of not only publish-and-subscribe, but also the storage and processing of data within the stream

Tarantool

Tarantool

It is designed to give you the flexibility, scalability, and performance that you want, as well as the reliability and manageability that you need in mission-critical applications

Azure Redis Cache

Azure Redis Cache

It perfectly complements Azure database services such as Cosmos DB. It provides a cost-effective solution to scale read and write throughput of your data tier. Store and share database query results, session states, static contents, and more using a common cache-aside pattern.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase