What is XenServer and what are its top alternatives?
Top Alternatives to XenServer
- Proxmox VE
It is a complete open-source platform for all-inclusive enterprise virtualization that tightly integrates KVM hypervisor and LXC containers, software-defined storage and networking functionality on a single platform, and easily manages high availability clusters and disaster recovery tools with the built-in web management interface. ...
- OpenStack
OpenStack is a cloud operating system that controls large pools of compute, storage, and networking resources throughout a datacenter, all managed through a dashboard that gives administrators control while empowering their users to provision resources through a web interface. ...
- KVM
KVM (for Kernel-based Virtual Machine) is a full virtualization solution for Linux on x86 hardware containing virtualization extensions (Intel VT or AMD-V). ...
- Vagrant
Vagrant provides the framework and configuration format to create and manage complete portable development environments. These development environments can live on your computer or in the cloud, and are portable between Windows, Mac OS X, and Linux. ...
- boot2docker
boot2docker is a lightweight Linux distribution based on Tiny Core Linux made specifically to run Docker containers. It runs completely from RAM, weighs ~27MB and boots in ~5s (YMMV). ...
- libvirt
It is an open-source API, daemon and management tool for managing platform virtualization. It can be used to manage KVM, Xen, VMware ESXi, QEMU and other virtualization technologies. ...
- Otto
Otto automatically builds development environments without any configuration; it can detect your project type and has built-in knowledge of industry-standard tools to setup a development environment that is ready to go. When you're ready to deploy, otto builds and manages an infrastructure, sets up servers, builds, and deploys the application. ...
- VMware ESXi
It is a bare metal hypervisor that installs easily on to your server and partitions it into multiple virtual machines. It effectively partitions hardware to consolidate applications and cut costs. ...
XenServer alternatives & related posts
- HA VM & LXC devices9
- Ease of use8
- Robust architecture7
- Avoid vendor lock-in6
- Free6
- Cluster3
- Backup2
related Proxmox VE posts
- Private cloud56
- Avoid vendor lock-in37
- Flexible in use22
- Industry leader6
- Supported by many companies in top5004
- Robust architecture4
related OpenStack posts
- No license issues4
- Very fast2
- Flexible network options2
related KVM posts
- Development environments352
- Simple bootstraping290
- Free237
- Boxes139
- Provisioning130
- Portable84
- Synced folders81
- Reproducible69
- Ssh51
- Very flexible44
- Works well, can be replicated easily with other devs5
- Easy-to-share, easy-to-version dev configuration5
- Great3
- Just works3
- Quick way to get running2
- DRY - "Do Not Repeat Yourself"1
- Container Friendly1
- What is vagrant?1
- Good documentation1
- Can become v complex w prod. provisioner (Salt, etc.)2
- Multiple VMs quickly eat up disk space2
- Development environment that kills your battery1
related Vagrant posts
Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).
It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up
or vagrant reload
we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.
I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up
, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.
We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.
If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.
The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).
Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.
We use VirtualBox primarily as a Vagrant provider for macOS for the Zulip development environment. It's totally reasonable software for providing a convenient virtual machine setup on macOS (and for debugging when things go wrong, which is mostly how we use it since the Vagrant provider for macOS just works).
- Lightweight43
- Use docker when it's not natively possible35
- Use it for fast demo without big image11
- Easy to use3
- Containers3
related boot2docker posts
- Low overhead2
- Free2
- Built into most Linux distros2
- Fast2
- Native KVM and QEMU2
- Native hypervisor2
- Can fully manage via CLI or VirtManager2
- VirtIO direct hardware access2
- VirtIO direct hardware support1
related libvirt posts
- Vagrant-like11
- Written in golang4
- Hashicorp built3