StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Utilities
  3. Business Intelligence
  4. Business Intelligence
  5. Azure Synapse vs Metabase

Azure Synapse vs Metabase

OverviewComparisonAlternatives

Overview

Metabase
Metabase
Stacks928
Followers1.2K
Votes271
GitHub Stars44.4K
Forks6.0K
Azure Synapse
Azure Synapse
Stacks104
Followers230
Votes10

Metabase vs Azure Synapse: What are the differences?

Developers describe Metabase as "An open-source business intelligence tool". It is an easy way to generate charts and dashboards, ask simple ad hoc queries without using SQL, and see detailed information about rows in your Database. You can set it up in under 5 minutes, and then give yourself and others a place to ask simple questions and understand the data your application is generating. On the other hand, Azure Synapse is detailed as "Analytics service that brings together enterprise data warehousing and Big Data analytics". It is an analytics service that brings together enterprise data warehousing and Big Data analytics. It gives you the freedom to query data on your terms, using either serverless on-demand or provisioned resources—at scale. It brings these two worlds together with a unified experience to ingest, prepare, manage, and serve data for immediate BI and machine learning needs.

Metabase and Azure Synapse are primarily classified as "Business Intelligence" and "Big Data" tools respectively.

Metabase is an open source tool with 21.6K GitHub stars and 2.88K GitHub forks. Here's a link to Metabase's open source repository on GitHub.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Detailed Comparison

Metabase
Metabase
Azure Synapse
Azure Synapse

It is an easy way to generate charts and dashboards, ask simple ad hoc queries without using SQL, and see detailed information about rows in your Database. You can set it up in under 5 minutes, and then give yourself and others a place to ask simple questions and understand the data your application is generating.

It is an analytics service that brings together enterprise data warehousing and Big Data analytics. It gives you the freedom to query data on your terms, using either serverless on-demand or provisioned resources—at scale. It brings these two worlds together with a unified experience to ingest, prepare, manage, and serve data for immediate BI and machine learning needs.

-
Complete T-SQL based analytics – Generally Available; Deeply integrated Apache Spark; Hybrid data integration; Unified user experience
Statistics
GitHub Stars
44.4K
GitHub Stars
-
GitHub Forks
6.0K
GitHub Forks
-
Stacks
928
Stacks
104
Followers
1.2K
Followers
230
Votes
271
Votes
10
Pros & Cons
Pros
  • 62
    Database visualisation
  • 45
    Open Source
  • 41
    Easy setup
  • 36
    Dashboard out of the box
  • 23
    Free
Cons
  • 7
    Harder to setup than similar tools
Pros
  • 4
    ETL
  • 3
    Security
  • 2
    Serverless
  • 1
    Doesn't support cross database query
Cons
  • 1
    Dictionary Size Limitation - CCI
  • 1
    Concurrency
Integrations
PostgreSQL
PostgreSQL
MongoDB
MongoDB
Amazon Redshift
Amazon Redshift
MySQL
MySQL
Microsoft SQL Server
Microsoft SQL Server
No integrations available

What are some alternatives to Metabase, Azure Synapse?

Google BigQuery

Google BigQuery

Run super-fast, SQL-like queries against terabytes of data in seconds, using the processing power of Google's infrastructure. Load data with ease. Bulk load your data using Google Cloud Storage or stream it in. Easy access. Access BigQuery by using a browser tool, a command-line tool, or by making calls to the BigQuery REST API with client libraries such as Java, PHP or Python.

Apache Spark

Apache Spark

Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.

Amazon Redshift

Amazon Redshift

It is optimized for data sets ranging from a few hundred gigabytes to a petabyte or more and costs less than $1,000 per terabyte per year, a tenth the cost of most traditional data warehousing solutions.

Qubole

Qubole

Qubole is a cloud based service that makes big data easy for analysts and data engineers.

Presto

Presto

Distributed SQL Query Engine for Big Data

Amazon EMR

Amazon EMR

It is used in a variety of applications, including log analysis, data warehousing, machine learning, financial analysis, scientific simulation, and bioinformatics.

Amazon Athena

Amazon Athena

Amazon Athena is an interactive query service that makes it easy to analyze data in Amazon S3 using standard SQL. Athena is serverless, so there is no infrastructure to manage, and you pay only for the queries that you run.

Superset

Superset

Superset's main goal is to make it easy to slice, dice and visualize data. It empowers users to perform analytics at the speed of thought.

Apache Flink

Apache Flink

Apache Flink is an open source system for fast and versatile data analytics in clusters. Flink supports batch and streaming analytics, in one system. Analytical programs can be written in concise and elegant APIs in Java and Scala.

lakeFS

lakeFS

It is an open-source data version control system for data lakes. It provides a “Git for data” platform enabling you to implement best practices from software engineering on your data lake, including branching and merging, CI/CD, and production-like dev/test environments.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase