StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Databases
  4. Databases
  5. Chronix vs MySQL

Chronix vs MySQL

OverviewDecisionsComparisonAlternatives

Overview

MySQL
MySQL
Stacks129.6K
Followers108.6K
Votes3.8K
GitHub Stars11.8K
Forks4.1K
Chronix
Chronix
Stacks3
Followers12
Votes0
GitHub Stars266
Forks27

Chronix vs MySQL: What are the differences?

Introduction:

Chronix and MySQL are both database management systems that have their own unique features and functionalities. Understanding the key differences between these two systems can help users make informed decisions when choosing the right platform for their specific needs.

  1. Data Model: Chronix is a time series database that is optimized for efficiently storing and querying time-stamped data. In contrast, MySQL is a relational database management system that stores data in tables with rows and columns.

  2. Query Language: Chronix uses Chronix Query Language (CQL) for querying time series data, which is specialized for time-based operations such as aggregations over time intervals. On the other hand, MySQL uses SQL (Structured Query Language) for querying data in relational databases, which is more versatile and widely used.

  3. Scalability: Chronix is designed to handle large volumes of time series data and can scale horizontally by adding more nodes to the cluster. In comparison, while MySQL can scale vertically by increasing the resources on a single machine, it may face limitations in horizontal scalability.

  4. Data Compression: Chronix utilizes specialized algorithms for data compression to minimize storage requirements for time series data, which can be crucial for efficient storage and retrieval. In MySQL, data compression techniques may not be as specialized for time series data and may not provide the same level of optimization.

  5. Tuning and Configuration: Chronix comes with specific tuning parameters and configurations that are tailored for time series data storage and querying, providing users with optimized performance. MySQL, being a more general-purpose database system, may require additional tuning and configurations to achieve optimal performance for time series data.

  6. Use Cases: Chronix is well-suited for applications that deal with large volumes of time series data, such as monitoring systems, IoT devices, and financial data analysis. MySQL, on the other hand, is commonly used for general-purpose applications that require relational data management, such as e-commerce websites, content management systems, and business applications.

In Summary, understanding the key differences between Chronix and MySQL in terms of data model, query language, scalability, data compression, tuning, and use cases can help users choose the right database management system for their specific needs.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on MySQL, Chronix

Kyle
Kyle

Web Application Developer at Redacted DevWorks

Dec 3, 2019

DecidedonPostGISPostGIS

While there's been some very clever techniques that has allowed non-natively supported geo querying to be performed, it is incredibly slow in the long game and error prone at best.

MySQL finally introduced it's own GEO functions and special indexing operations for GIS type data. I prototyped with this, as MySQL is the most familiar database to me. But no matter what I did with it, how much tuning i'd give it, how much I played with it, the results would come back inconsistent.

It was very disappointing.

I figured, at this point, that SQL Server, being an enterprise solution authored by one of the biggest worldwide software developers in the world, Microsoft, might contain some decent GIS in it.

I was very disappointed.

Postgres is a Database solution i'm still getting familiar with, but I noticed it had no built in support for GIS. So I hilariously didn't pay it too much attention. That was until I stumbled upon PostGIS and my world changed forever.

449k views449k
Comments
Ido
Ido

Mar 6, 2020

Decided

My data was inherently hierarchical, but there was not enough content in each level of the hierarchy to justify a relational DB (SQL) with a one-to-many approach. It was also far easier to share data between the frontend (Angular), backend (Node.js) and DB (MongoDB) as they all pass around JSON natively. This allowed me to skip the translation layer from relational to hierarchical. You do need to think about correct indexes in MongoDB, and make sure the objects have finite size. For instance, an object in your DB shouldn't have a property which is an array that grows over time, without limit. In addition, I did use MySQL for other types of data, such as a catalog of products which (a) has a lot of data, (b) flat and not hierarchical, (c) needed very fast queries.

575k views575k
Comments
Navraj
Navraj

CEO at SuPragma

Apr 16, 2020

Needs adviceonMySQLMySQLPostgreSQLPostgreSQL

I asked my last question incorrectly. Rephrasing it here.

I am looking for the most secure open source database for my project I'm starting: https://github.com/SuPragma/SuPragma/wiki

Which database is more secure? MySQL or PostgreSQL? Are there others I should be considering? Is it possible to change the encryption keys dynamically?

Thanks,

Raj

401k views401k
Comments

Detailed Comparison

MySQL
MySQL
Chronix
Chronix

The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software.

Chronix is built to store time series highly compressed and for fast access times. In comparison to related time series databases, Chronix does not only take 5 to 171 times less space, but it also shaves off 83% of the access time, and up to 78% off the runtime on a mix of real world queries.

Statistics
GitHub Stars
11.8K
GitHub Stars
266
GitHub Forks
4.1K
GitHub Forks
27
Stacks
129.6K
Stacks
3
Followers
108.6K
Followers
12
Votes
3.8K
Votes
0
Pros & Cons
Pros
  • 800
    Sql
  • 679
    Free
  • 562
    Easy
  • 528
    Widely used
  • 490
    Open source
Cons
  • 16
    Owned by a company with their own agenda
  • 3
    Can't roll back schema changes
No community feedback yet

What are some alternatives to MySQL, Chronix?

MongoDB

MongoDB

MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding.

PostgreSQL

PostgreSQL

PostgreSQL is an advanced object-relational database management system that supports an extended subset of the SQL standard, including transactions, foreign keys, subqueries, triggers, user-defined types and functions.

Microsoft SQL Server

Microsoft SQL Server

Microsoft® SQL Server is a database management and analysis system for e-commerce, line-of-business, and data warehousing solutions.

SQLite

SQLite

SQLite is an embedded SQL database engine. Unlike most other SQL databases, SQLite does not have a separate server process. SQLite reads and writes directly to ordinary disk files. A complete SQL database with multiple tables, indices, triggers, and views, is contained in a single disk file.

Cassandra

Cassandra

Partitioning means that Cassandra can distribute your data across multiple machines in an application-transparent matter. Cassandra will automatically repartition as machines are added and removed from the cluster. Row store means that like relational databases, Cassandra organizes data by rows and columns. The Cassandra Query Language (CQL) is a close relative of SQL.

Memcached

Memcached

Memcached is an in-memory key-value store for small chunks of arbitrary data (strings, objects) from results of database calls, API calls, or page rendering.

MariaDB

MariaDB

Started by core members of the original MySQL team, MariaDB actively works with outside developers to deliver the most featureful, stable, and sanely licensed open SQL server in the industry. MariaDB is designed as a drop-in replacement of MySQL(R) with more features, new storage engines, fewer bugs, and better performance.

RethinkDB

RethinkDB

RethinkDB is built to store JSON documents, and scale to multiple machines with very little effort. It has a pleasant query language that supports really useful queries like table joins and group by, and is easy to setup and learn.

ArangoDB

ArangoDB

A distributed free and open-source database with a flexible data model for documents, graphs, and key-values. Build high performance applications using a convenient SQL-like query language or JavaScript extensions.

InfluxDB

InfluxDB

InfluxDB is a scalable datastore for metrics, events, and real-time analytics. It has a built-in HTTP API so you don't have to write any server side code to get up and running. InfluxDB is designed to be scalable, simple to install and manage, and fast to get data in and out.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase