What is Cilium and what are its top alternatives?
Top Alternatives to Cilium
WeaveWeave can traverse firewalls and operate in partially connected networks. Traffic can be encrypted, allowing hosts to be connected across an untrusted network. With weave you can easily construct applications consisting of multiple containers, running anywhere. ...
IstioIstio is an open platform for providing a uniform way to integrate microservices, manage traffic flow across microservices, enforce policies and aggregate telemetry data. Istio's control plane provides an abstraction layer over the underlying cluster management platform, such as Kubernetes, Mesos, etc. ...
EnvoyOriginally built at Lyft, Envoy is a high performance C++ distributed proxy designed for single services and applications, as well as a communication bus and “universal data plane” designed for large microservice “service mesh” architectures. ...
linkerdlinkerd is an out-of-process network stack for microservices. It functions as a transparent RPC proxy, handling everything needed to make inter-service RPC safe and sane--including load-balancing, service discovery, instrumentation, and routing. ...
PostmanIt is the only complete API development environment, used by nearly five million developers and more than 100,000 companies worldwide. ...
PostmanIt is the only complete API development environment, used by nearly five million developers and more than 100,000 companies worldwide. ...
Stack OverflowStack Overflow is a question and answer site for professional and enthusiast programmers. It's built and run by you as part of the Stack Exchange network of Q&A sites. With your help, we're working together to build a library of detailed answers to every question about programming. ...
Google MapsCreate rich applications and stunning visualisations of your data, leveraging the comprehensiveness, accuracy, and usability of Google Maps and a modern web platform that scales as you grow. ...
Cilium alternatives & related posts
Weave
- Easy setup3
- Seamlessly with mesos/marathon3
- Seamless integration with application layer1
related Weave posts
- Zero code for logging and monitoring14
- Service Mesh9
- Great flexibility8
- Resiliency5
- Powerful authorization mechanisms5
- Ingress controller5
- Easy integration with Kubernetes and Docker4
- Full Security4
- Performance17
related Istio posts
At my company, we are trying to move away from a monolith into microservices led architecture. We are now stuck with a problem to establish a communication mechanism between microservices. Since, we are planning to use service meshes and something like Dapr/Istio, we are not sure on how to split services between the two. Service meshes offer Traffic Routing or Splitting whereas, Dapr can offer state management and service-service invocation. At the same time both of them provide mLTS, Metrics, Resiliency and tracing. How to choose who should offer what?
As for the new support of service mesh pattern by Kong, I wonder how does it compare to Istio?
related Envoy posts
We just launched the Segment Config API (try it out for yourself here) — a set of public REST APIs that enable you to manage your Segment configuration. Behind the scenes the Config API is built with Go , GRPC and Envoy.
At Segment, we build new services in Go by default. The language is simple so new team members quickly ramp up on a codebase. The tool chain is fast so developers get immediate feedback when they break code, tests or integrations with other systems. The runtime is fast so it performs great at scale.
For the newest round of APIs we adopted the GRPC service #framework.
The Protocol Buffer service definition language makes it easy to design type-safe and consistent APIs, thanks to ecosystem tools like the Google API Design Guide for API standards, uber/prototool for formatting and linting .protos and lyft/protoc-gen-validate for defining field validations, and grpc-gateway for defining REST mapping.
With a well designed .proto, its easy to generate a Go server interface and a TypeScript client, providing type-safe RPC between languages.
For the API gateway and RPC we adopted the Envoy service proxy.
The internet-facing segmentapis.com endpoint is an Envoy front proxy that rate-limits and authenticates every request. It then transcodes a #REST / #JSON request to an upstream GRPC request. The upstream GRPC servers are running an Envoy sidecar configured for Datadog stats.
The result is API #security , #reliability and consistent #observability through Envoy configuration, not code.
We experimented with Swagger service definitions, but the spec is sprawling and the generated clients and server stubs leave a lot to be desired. GRPC and .proto and the Go implementation feels better designed and implemented. Thanks to the GRPC tooling and ecosystem you can generate Swagger from .protos, but it’s effectively impossible to go the other way.
At uSwitch we wanted a way to load balance between our multiple Kubernetes clusters in AWS to give us added redundancy. We already had ingresses defined for all our applications so we wanted to build on top of that, instead of creating a new system that would require our various teams to change code/config etc.
Envoy seemed to tick a lot of boxes:
- Loadbalancing capabilities right out of the box: health checks, circuit breaking, retries etc.
- Tracing and prometheus metrics support
- Lightweight
- Good community support
This was all good but what really sold us was the api that supported dynamic configuration. This would allow us to dynamically configure envoy to route to ingresses and clusters as they were created or destroyed.
To do this we built a tool called Yggdrasil using their Go sdk. Yggdrasil effectively just creates envoy configuration from Kubernetes ingress objects, so you point Yggdrasil at your kube clusters, it generates config from the ingresses and then envoy can loadbalance between your clusters for you. This is all done dynamically so as soon as new ingress is created the envoy nodes get updated with the new config. Importantly this all worked with what we already had, no need to create new config for every application, we just put this on top of it.
- CNCF Project3
- Service Mesh1
- Fast Integration1
- Pre-check permissions1
- Light Weight1
related linkerd posts
- Easy to use490
- Great tool369
- Makes developing rest api's easy peasy276
- Easy setup, looks good156
- The best api workflow out there144
- It's the best53
- History feature53
- Adds real value to my workflow44
- Great interface that magically predicts your needs43
- The best in class app35
- Can save and share script12
- Fully featured without looking cluttered10
- Collections8
- Option to run scrips8
- Global/Environment Variables8
- Shareable Collections7
- Dead simple and useful. Excellent7
- Dark theme easy on the eyes7
- Awesome customer support6
- Great integration with newman6
- Documentation5
- Simple5
- The test script is useful5
- Saves responses4
- This has simplified my testing significantly4
- Makes testing API's as easy as 1,2,34
- Easy as pie4
- API-network3
- I'd recommend it to everyone who works with apis3
- Mocking API calls with predefined response3
- Now supports GraphQL2
- Postman Runner CI Integration2
- Easy to setup, test and provides test storage2
- Continuous integration using newman2
- Pre-request Script and Test attributes are invaluable2
- Runner2
- Graph2
- <a href="http://fixbit.com/">useful tool</a>1
- Stores credentials in HTTP10
- Bloated features and UI9
- Cumbersome to switch authentication tokens8
- Poor GraphQL support7
- Expensive5
- Not free after 5 users3
- Can't prompt for per-request variables3
- Import swagger1
- Support websocket1
- Import curl1
related Postman posts
We just launched the Segment Config API (try it out for yourself here) — a set of public REST APIs that enable you to manage your Segment configuration. A public API is only as good as its #documentation. For the API reference doc we are using Postman.
Postman is an “API development environment”. You download the desktop app, and build API requests by URL and payload. Over time you can build up a set of requests and organize them into a “Postman Collection”. You can generalize a collection with “collection variables”. This allows you to parameterize things like username, password and workspace_name so a user can fill their own values in before making an API call. This makes it possible to use Postman for one-off API tasks instead of writing code.
Then you can add Markdown content to the entire collection, a folder of related methods, and/or every API method to explain how the APIs work. You can publish a collection and easily share it with a URL.
This turns Postman from a personal #API utility to full-blown public interactive API documentation. The result is a great looking web page with all the API calls, docs and sample requests and responses in one place. Check out the results here.
Postman’s powers don’t end here. You can automate Postman with “test scripts” and have it periodically run a collection scripts as “monitors”. We now have #QA around all the APIs in public docs to make sure they are always correct
Along the way we tried other techniques for documenting APIs like ReadMe.io or Swagger UI. These required a lot of effort to customize.
Writing and maintaining a Postman collection takes some work, but the resulting documentation site, interactivity and API testing tools are well worth it.
Our whole Node.js backend stack consists of the following tools:
- Lerna as a tool for multi package and multi repository management
- npm as package manager
- NestJS as Node.js framework
- TypeScript as programming language
- ExpressJS as web server
- Swagger UI for visualizing and interacting with the API’s resources
- Postman as a tool for API development
- TypeORM as object relational mapping layer
- JSON Web Token for access token management
The main reason we have chosen Node.js over PHP is related to the following artifacts:
- Made for the web and widely in use: Node.js is a software platform for developing server-side network services. Well-known projects that rely on Node.js include the blogging software Ghost, the project management tool Trello and the operating system WebOS. Node.js requires the JavaScript runtime environment V8, which was specially developed by Google for the popular Chrome browser. This guarantees a very resource-saving architecture, which qualifies Node.js especially for the operation of a web server. Ryan Dahl, the developer of Node.js, released the first stable version on May 27, 2009. He developed Node.js out of dissatisfaction with the possibilities that JavaScript offered at the time. The basic functionality of Node.js has been mapped with JavaScript since the first version, which can be expanded with a large number of different modules. The current package managers (npm or Yarn) for Node.js know more than 1,000,000 of these modules.
- Fast server-side solutions: Node.js adopts the JavaScript "event-loop" to create non-blocking I/O applications that conveniently serve simultaneous events. With the standard available asynchronous processing within JavaScript/TypeScript, highly scalable, server-side solutions can be realized. The efficient use of the CPU and the RAM is maximized and more simultaneous requests can be processed than with conventional multi-thread servers.
- A language along the entire stack: Widely used frameworks such as React or AngularJS or Vue.js, which we prefer, are written in JavaScript/TypeScript. If Node.js is now used on the server side, you can use all the advantages of a uniform script language throughout the entire application development. The same language in the back- and frontend simplifies the maintenance of the application and also the coordination within the development team.
- Flexibility: Node.js sets very few strict dependencies, rules and guidelines and thus grants a high degree of flexibility in application development. There are no strict conventions so that the appropriate architecture, design structures, modules and features can be freely selected for the development.
- Easy to use490
- Great tool369
- Makes developing rest api's easy peasy276
- Easy setup, looks good156
- The best api workflow out there144
- It's the best53
- History feature53
- Adds real value to my workflow44
- Great interface that magically predicts your needs43
- The best in class app35
- Can save and share script12
- Fully featured without looking cluttered10
- Collections8
- Option to run scrips8
- Global/Environment Variables8
- Shareable Collections7
- Dead simple and useful. Excellent7
- Dark theme easy on the eyes7
- Awesome customer support6
- Great integration with newman6
- Documentation5
- Simple5
- The test script is useful5
- Saves responses4
- This has simplified my testing significantly4
- Makes testing API's as easy as 1,2,34
- Easy as pie4
- API-network3
- I'd recommend it to everyone who works with apis3
- Mocking API calls with predefined response3
- Now supports GraphQL2
- Postman Runner CI Integration2
- Easy to setup, test and provides test storage2
- Continuous integration using newman2
- Pre-request Script and Test attributes are invaluable2
- Runner2
- Graph2
- <a href="http://fixbit.com/">useful tool</a>1
- Stores credentials in HTTP10
- Bloated features and UI9
- Cumbersome to switch authentication tokens8
- Poor GraphQL support7
- Expensive5
- Not free after 5 users3
- Can't prompt for per-request variables3
- Import swagger1
- Support websocket1
- Import curl1
related Postman posts
We just launched the Segment Config API (try it out for yourself here) — a set of public REST APIs that enable you to manage your Segment configuration. A public API is only as good as its #documentation. For the API reference doc we are using Postman.
Postman is an “API development environment”. You download the desktop app, and build API requests by URL and payload. Over time you can build up a set of requests and organize them into a “Postman Collection”. You can generalize a collection with “collection variables”. This allows you to parameterize things like username, password and workspace_name so a user can fill their own values in before making an API call. This makes it possible to use Postman for one-off API tasks instead of writing code.
Then you can add Markdown content to the entire collection, a folder of related methods, and/or every API method to explain how the APIs work. You can publish a collection and easily share it with a URL.
This turns Postman from a personal #API utility to full-blown public interactive API documentation. The result is a great looking web page with all the API calls, docs and sample requests and responses in one place. Check out the results here.
Postman’s powers don’t end here. You can automate Postman with “test scripts” and have it periodically run a collection scripts as “monitors”. We now have #QA around all the APIs in public docs to make sure they are always correct
Along the way we tried other techniques for documenting APIs like ReadMe.io or Swagger UI. These required a lot of effort to customize.
Writing and maintaining a Postman collection takes some work, but the resulting documentation site, interactivity and API testing tools are well worth it.
Our whole Node.js backend stack consists of the following tools:
- Lerna as a tool for multi package and multi repository management
- npm as package manager
- NestJS as Node.js framework
- TypeScript as programming language
- ExpressJS as web server
- Swagger UI for visualizing and interacting with the API’s resources
- Postman as a tool for API development
- TypeORM as object relational mapping layer
- JSON Web Token for access token management
The main reason we have chosen Node.js over PHP is related to the following artifacts:
- Made for the web and widely in use: Node.js is a software platform for developing server-side network services. Well-known projects that rely on Node.js include the blogging software Ghost, the project management tool Trello and the operating system WebOS. Node.js requires the JavaScript runtime environment V8, which was specially developed by Google for the popular Chrome browser. This guarantees a very resource-saving architecture, which qualifies Node.js especially for the operation of a web server. Ryan Dahl, the developer of Node.js, released the first stable version on May 27, 2009. He developed Node.js out of dissatisfaction with the possibilities that JavaScript offered at the time. The basic functionality of Node.js has been mapped with JavaScript since the first version, which can be expanded with a large number of different modules. The current package managers (npm or Yarn) for Node.js know more than 1,000,000 of these modules.
- Fast server-side solutions: Node.js adopts the JavaScript "event-loop" to create non-blocking I/O applications that conveniently serve simultaneous events. With the standard available asynchronous processing within JavaScript/TypeScript, highly scalable, server-side solutions can be realized. The efficient use of the CPU and the RAM is maximized and more simultaneous requests can be processed than with conventional multi-thread servers.
- A language along the entire stack: Widely used frameworks such as React or AngularJS or Vue.js, which we prefer, are written in JavaScript/TypeScript. If Node.js is now used on the server side, you can use all the advantages of a uniform script language throughout the entire application development. The same language in the back- and frontend simplifies the maintenance of the application and also the coordination within the development team.
- Flexibility: Node.js sets very few strict dependencies, rules and guidelines and thus grants a high degree of flexibility in application development. There are no strict conventions so that the appropriate architecture, design structures, modules and features can be freely selected for the development.
- Scary smart community257
- Knows all206
- Voting system142
- Good questions134
- Good SEO83
- Addictive22
- Tight focus14
- Share and gain knowledge10
- Useful7
- Fast loading3
- Gamification2
- Knows everyone1
- Experts share experience and answer questions1
- Stack overflow to developers As google to net surfers1
- Questions answered quickly1
- No annoying ads1
- No spam1
- Fast community response1
- Good moderators1
- Quick answers from users1
- Good answers1
- User reputation ranking1
- Efficient answers1
- Leading developer community1
- Not welcoming to newbies3
- Unfair downvoting3
- Unfriendly moderators3
- No opinion based questions3
- Mean users3
- Limited to types of questions it can accept2
related Stack Overflow posts
Google Analytics is a great tool to analyze your traffic. To debug our software and ask questions, we love to use Postman and Stack Overflow. Google Drive helps our team to share documents. We're able to build our great products through the APIs by Google Maps, CloudFlare, Stripe, PayPal, Twilio, Let's Encrypt, and TensorFlow.
- Free253
- Address input through maps api136
- Sharable Directions82
- Google Earth47
- Unique46
- Custom maps designing3
- Eşya Depolama1
- Google Attributions and logo5
- Only map allowed alongside google place autocomplete2
related Google Maps posts
Google Analytics is a great tool to analyze your traffic. To debug our software and ask questions, we love to use Postman and Stack Overflow. Google Drive helps our team to share documents. We're able to build our great products through the APIs by Google Maps, CloudFlare, Stripe, PayPal, Twilio, Let's Encrypt, and TensorFlow.
A huge component of our product relies on gathering public data about locations of interest. Google Places API gives us that ability in the most efficient way. Since we are primarily going to be using as google data as a source of information for our MVP, we might as well start integrating the Google Places API in our system. We have worked with Google Maps in the past and we might take some inspiration from our previous projects onto this one.




















