Alternatives to Faktory logo

Alternatives to Faktory

Sidekiq, RabbitMQ, MySQL, PostgreSQL, and MongoDB are the most popular alternatives and competitors to Faktory.
6
27
+ 1
3

What is Faktory and what are its top alternatives?

Faktory is a robust background job processing system that allows developers to queue tasks and execute them asynchronously. It provides reliable job processing with automatic retries and scheduling capabilities. Faktory also offers multiple language support, monitoring tools, and a user-friendly dashboard. However, one limitation of Faktory is that it requires separate installation and maintenance compared to built-in solutions like Sidekiq for Ruby on Rails applications.

  1. Sidekiq: Sidekiq is a popular Ruby background job processing library with features like job scheduling, retry mechanisms, and support for multiple queues. It is easy to set up, efficient, and has an active community for support. However, Sidekiq does not provide a built-in dashboard for monitoring.
  2. Resque: Resque is a Redis-backed Ruby library for creating background jobs. It offers simple queue management, job monitoring, and support for plugins. However, Resque may not scale well for large job volumes.
  3. Celery: Celery is a distributed task queue for Python applications. It supports scheduling, monitoring, and integration with various message brokers like RabbitMQ and Redis. Celery is highly customizable but may have a steep learning curve.
  4. Sidekiq Pro: Sidekiq Pro is a commercial version of Sidekiq that offers additional features like job batching, job prioritization, and exclusive access to enterprise support. It is suitable for large-scale applications with complex job processing requirements.
  5. Delayed::Job: Delayed::Job is a Ruby library that provides a simple way to queue tasks and process them in the background. It is easy to integrate with Rails applications and has a straightforward setup process. However, it may lack advanced features compared to other solutions.
  6. Gearman: Gearman is a distributed job queuing system that supports multiple programming languages and can scale to handle a high volume of jobs. It offers job scheduling, load balancing, and fault tolerance features. However, setting up and managing Gearman clusters can be complex.
  7. ActiveJob: ActiveJob is a built-in job framework in Ruby on Rails that abstracts the backend job processing engine. It provides a unified interface for queuing jobs across different backends like Sidekiq, Resque, and Delayed::Job. However, ActiveJob may lack some advanced features compared to dedicated job processing libraries.
  8. JobRunr: JobRunr is a Java library for background job processing that offers features like automatic retries, scheduling, and persistent job storage. It is easy to use and suitable for Java applications with asynchronous processing needs. However, JobRunr may have limited community support compared to other solutions.
  9. Kue: Kue is a priority job queue for Node.js applications that provides features like delay scheduling, job retries, and job progress tracking. It integrates well with Express.js and offers a user-friendly interface for monitoring and managing jobs. However, Kue may not be as actively maintained as other alternatives.
  10. Jesque: Jesque is a Java library that provides a clone of the Resque library for Ruby. It offers simple job queuing, monitoring, and plugin support for Java applications. Jesque is a lightweight solution for basic job processing needs but may lack advanced features compared to other options.

Top Alternatives to Faktory

  • Sidekiq
    Sidekiq

    Sidekiq uses threads to handle many jobs at the same time in the same process. It does not require Rails but will integrate tightly with Rails 3/4 to make background processing dead simple. ...

  • RabbitMQ
    RabbitMQ

    RabbitMQ gives your applications a common platform to send and receive messages, and your messages a safe place to live until received. ...

  • MySQL
    MySQL

    The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software. ...

  • PostgreSQL
    PostgreSQL

    PostgreSQL is an advanced object-relational database management system that supports an extended subset of the SQL standard, including transactions, foreign keys, subqueries, triggers, user-defined types and functions. ...

  • MongoDB
    MongoDB

    MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding. ...

  • Redis
    Redis

    Redis is an open source (BSD licensed), in-memory data structure store, used as a database, cache, and message broker. Redis provides data structures such as strings, hashes, lists, sets, sorted sets with range queries, bitmaps, hyperloglogs, geospatial indexes, and streams. ...

  • Amazon S3
    Amazon S3

    Amazon Simple Storage Service provides a fully redundant data storage infrastructure for storing and retrieving any amount of data, at any time, from anywhere on the web ...

  • GitHub Actions
    GitHub Actions

    It makes it easy to automate all your software workflows, now with world-class CI/CD. Build, test, and deploy your code right from GitHub. Make code reviews, branch management, and issue triaging work the way you want. ...

Faktory alternatives & related posts

Sidekiq logo

Sidekiq

1.1K
408
Simple, efficient background processing for Ruby
1.1K
408
PROS OF SIDEKIQ
  • 124
    Simple
  • 99
    Efficient background processing
  • 60
    Scalability
  • 37
    Better then resque
  • 26
    Great documentation
  • 15
    Admin tool
  • 14
    Great community
  • 8
    Integrates with redis automatically, with zero config
  • 7
    Stupidly simple to integrate and run on Rails/Heroku
  • 7
    Great support
  • 3
    Ruby
  • 3
    Freeium
  • 2
    Pro version
  • 1
    Dashboard w/live polling
  • 1
    Great ecosystem of addons
  • 1
    Fast
CONS OF SIDEKIQ
    Be the first to leave a con

    related Sidekiq posts

    Cyril Duchon-Doris

    We decided to use AWS Lambda for several serverless tasks such as

    • Managing AWS backups
    • Processing emails received on Amazon SES and stored to Amazon S3 and notified via Amazon SNS, so as to push a message on our Redis so our Sidekiq Rails workers can process inbound emails
    • Pushing some relevant Amazon CloudWatch metrics and alarms to Slack
    See more
    Simon Bettison
    Managing Director at Bettison.org Limited · | 8 upvotes · 837.1K views

    In 2012 we made the very difficult decision to entirely re-engineer our existing monolithic LAMP application from the ground up in order to address some growing concerns about it's long term viability as a platform.

    Full application re-write is almost always never the answer, because of the risks involved. However the situation warranted drastic action as it was clear that the existing product was going to face severe scaling issues. We felt it better address these sooner rather than later and also take the opportunity to improve the international architecture and also to refactor the database in. order that it better matched the changes in core functionality.

    PostgreSQL was chosen for its reputation as being solid ACID compliant database backend, it was available as an offering AWS RDS service which reduced the management overhead of us having to configure it ourselves. In order to reduce read load on the primary database we implemented an Elasticsearch layer for fast and scalable search operations. Synchronisation of these indexes was to be achieved through the use of Sidekiq's Redis based background workers on Amazon ElastiCache. Again the AWS solution here looked to be an easy way to keep our involvement in managing this part of the platform at a minimum. Allowing us to focus on our core business.

    Rails ls was chosen for its ability to quickly get core functionality up and running, its MVC architecture and also its focus on Test Driven Development using RSpec and Selenium with Travis CI providing continual integration. We also liked Ruby for its terse, clean and elegant syntax. Though YMMV on that one!

    Unicorn was chosen for its continual deployment and reputation as a reliable application server, nginx for its reputation as a fast and stable reverse-proxy. We also took advantage of the Amazon CloudFront CDN here to further improve performance by caching static assets globally.

    We tried to strike a balance between having control over management and configuration of our core application with the convenience of being able to leverage AWS hosted services for ancillary functions (Amazon SES , Amazon SQS Amazon Route 53 all hosted securely inside Amazon VPC of course!).

    Whilst there is some compromise here with potential vendor lock in, the tasks being performed by these ancillary services are no particularly specialised which should mitigate this risk. Furthermore we have already containerised the stack in our development using Docker environment, and looking to how best to bring this into production - potentially using Amazon EC2 Container Service

    See more
    RabbitMQ logo

    RabbitMQ

    21.4K
    557
    Open source multiprotocol messaging broker
    21.4K
    557
    PROS OF RABBITMQ
    • 235
      It's fast and it works with good metrics/monitoring
    • 80
      Ease of configuration
    • 60
      I like the admin interface
    • 52
      Easy to set-up and start with
    • 22
      Durable
    • 19
      Standard protocols
    • 19
      Intuitive work through python
    • 11
      Written primarily in Erlang
    • 9
      Simply superb
    • 7
      Completeness of messaging patterns
    • 4
      Reliable
    • 4
      Scales to 1 million messages per second
    • 3
      Better than most traditional queue based message broker
    • 3
      Distributed
    • 3
      Supports MQTT
    • 3
      Supports AMQP
    • 2
      Clear documentation with different scripting language
    • 2
      Better routing system
    • 2
      Inubit Integration
    • 2
      Great ui
    • 2
      High performance
    • 2
      Reliability
    • 2
      Open-source
    • 2
      Runs on Open Telecom Platform
    • 2
      Clusterable
    • 2
      Delayed messages
    • 1
      Supports Streams
    • 1
      Supports STOMP
    • 1
      Supports JMS
    CONS OF RABBITMQ
    • 9
      Too complicated cluster/HA config and management
    • 6
      Needs Erlang runtime. Need ops good with Erlang runtime
    • 5
      Configuration must be done first, not by your code
    • 4
      Slow

    related RabbitMQ posts

    James Cunningham
    Operations Engineer at Sentry · | 18 upvotes · 1.8M views
    Shared insights
    on
    CeleryCeleryRabbitMQRabbitMQ
    at

    As Sentry runs throughout the day, there are about 50 different offline tasks that we execute—anything from “process this event, pretty please” to “send all of these cool people some emails.” There are some that we execute once a day and some that execute thousands per second.

    Managing this variety requires a reliably high-throughput message-passing technology. We use Celery's RabbitMQ implementation, and we stumbled upon a great feature called Federation that allows us to partition our task queue across any number of RabbitMQ servers and gives us the confidence that, if any single server gets backlogged, others will pitch in and distribute some of the backlogged tasks to their consumers.

    #MessageQueue

    See more
    Yogesh Bhondekar
    Product Manager | SaaS | Traveller · | 16 upvotes · 439K views

    Hi, I am building an enhanced web-conferencing app that will have a voice/video call, live chats, live notifications, live discussions, screen sharing, etc features. Ref: Zoom.

    I need advise finalizing the tech stack for this app. I am considering below tech stack:

    • Frontend: React
    • Backend: Node.js
    • Database: MongoDB
    • IAAS: #AWS
    • Containers & Orchestration: Docker / Kubernetes
    • DevOps: GitLab, Terraform
    • Brokers: Redis / RabbitMQ

    I need advice at the platform level as to what could be considered to support concurrent video streaming seamlessly.

    Also, please suggest what could be a better tech stack for my app?

    #SAAS #VideoConferencing #WebAndVideoConferencing #zoom #stack

    See more
    MySQL logo

    MySQL

    125.6K
    3.8K
    The world's most popular open source database
    125.6K
    3.8K
    PROS OF MYSQL
    • 800
      Sql
    • 679
      Free
    • 562
      Easy
    • 528
      Widely used
    • 490
      Open source
    • 180
      High availability
    • 160
      Cross-platform support
    • 104
      Great community
    • 79
      Secure
    • 75
      Full-text indexing and searching
    • 26
      Fast, open, available
    • 16
      Reliable
    • 16
      SSL support
    • 15
      Robust
    • 9
      Enterprise Version
    • 7
      Easy to set up on all platforms
    • 3
      NoSQL access to JSON data type
    • 1
      Relational database
    • 1
      Easy, light, scalable
    • 1
      Sequel Pro (best SQL GUI)
    • 1
      Replica Support
    CONS OF MYSQL
    • 16
      Owned by a company with their own agenda
    • 3
      Can't roll back schema changes

    related MySQL posts

    Nick Rockwell
    SVP, Engineering at Fastly · | 46 upvotes · 4.2M views

    When I joined NYT there was already broad dissatisfaction with the LAMP (Linux Apache HTTP Server MySQL PHP) Stack and the front end framework, in particular. So, I wasn't passing judgment on it. I mean, LAMP's fine, you can do good work in LAMP. It's a little dated at this point, but it's not ... I didn't want to rip it out for its own sake, but everyone else was like, "We don't like this, it's really inflexible." And I remember from being outside the company when that was called MIT FIVE when it had launched. And been observing it from the outside, and I was like, you guys took so long to do that and you did it so carefully, and yet you're not happy with your decisions. Why is that? That was more the impetus. If we're going to do this again, how are we going to do it in a way that we're gonna get a better result?

    So we're moving quickly away from LAMP, I would say. So, right now, the new front end is React based and using Apollo. And we've been in a long, protracted, gradual rollout of the core experiences.

    React is now talking to GraphQL as a primary API. There's a Node.js back end, to the front end, which is mainly for server-side rendering, as well.

    Behind there, the main repository for the GraphQL server is a big table repository, that we call Bodega because it's a convenience store. And that reads off of a Kafka pipeline.

    See more
    Tim Abbott

    We've been using PostgreSQL since the very early days of Zulip, but we actually didn't use it from the beginning. Zulip started out as a MySQL project back in 2012, because we'd heard it was a good choice for a startup with a wide community. However, we found that even though we were using the Django ORM for most of our database access, we spent a lot of time fighting with MySQL. Issues ranged from bad collation defaults, to bad query plans which required a lot of manual query tweaks.

    We ended up getting so frustrated that we tried out PostgresQL, and the results were fantastic. We didn't have to do any real customization (just some tuning settings for how big a server we had), and all of our most important queries were faster out of the box. As a result, we were able to delete a bunch of custom queries escaping the ORM that we'd written to make the MySQL query planner happy (because postgres just did the right thing automatically).

    And then after that, we've just gotten a ton of value out of postgres. We use its excellent built-in full-text search, which has helped us avoid needing to bring in a tool like Elasticsearch, and we've really enjoyed features like its partial indexes, which saved us a lot of work adding unnecessary extra tables to get good performance for things like our "unread messages" and "starred messages" indexes.

    I can't recommend it highly enough.

    See more
    PostgreSQL logo

    PostgreSQL

    98.5K
    3.5K
    A powerful, open source object-relational database system
    98.5K
    3.5K
    PROS OF POSTGRESQL
    • 764
      Relational database
    • 510
      High availability
    • 439
      Enterprise class database
    • 383
      Sql
    • 304
      Sql + nosql
    • 173
      Great community
    • 147
      Easy to setup
    • 131
      Heroku
    • 130
      Secure by default
    • 113
      Postgis
    • 50
      Supports Key-Value
    • 48
      Great JSON support
    • 34
      Cross platform
    • 33
      Extensible
    • 28
      Replication
    • 26
      Triggers
    • 23
      Multiversion concurrency control
    • 23
      Rollback
    • 21
      Open source
    • 18
      Heroku Add-on
    • 17
      Stable, Simple and Good Performance
    • 15
      Powerful
    • 13
      Lets be serious, what other SQL DB would you go for?
    • 11
      Good documentation
    • 9
      Scalable
    • 8
      Free
    • 8
      Reliable
    • 8
      Intelligent optimizer
    • 7
      Transactional DDL
    • 7
      Modern
    • 6
      One stop solution for all things sql no matter the os
    • 5
      Relational database with MVCC
    • 5
      Faster Development
    • 4
      Full-Text Search
    • 4
      Developer friendly
    • 3
      Excellent source code
    • 3
      Free version
    • 3
      Great DB for Transactional system or Application
    • 3
      Relational datanbase
    • 3
      search
    • 3
      Open-source
    • 2
      Text
    • 2
      Full-text
    • 1
      Can handle up to petabytes worth of size
    • 1
      Composability
    • 1
      Multiple procedural languages supported
    • 0
      Native
    CONS OF POSTGRESQL
    • 10
      Table/index bloatings

    related PostgreSQL posts

    Simon Reymann
    Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 11.6M views

    Our whole DevOps stack consists of the following tools:

    • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
    • Respectively Git as revision control system
    • SourceTree as Git GUI
    • Visual Studio Code as IDE
    • CircleCI for continuous integration (automatize development process)
    • Prettier / TSLint / ESLint as code linter
    • SonarQube as quality gate
    • Docker as container management (incl. Docker Compose for multi-container application management)
    • VirtualBox for operating system simulation tests
    • Kubernetes as cluster management for docker containers
    • Heroku for deploying in test environments
    • nginx as web server (preferably used as facade server in production environment)
    • SSLMate (using OpenSSL) for certificate management
    • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
    • PostgreSQL as preferred database system
    • Redis as preferred in-memory database/store (great for caching)

    The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

    • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
    • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
    • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
    • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
    • Scalability: All-in-one framework for distributed systems.
    • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
    See more
    Jeyabalaji Subramanian

    Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.

    We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient

    Based on the above criteria, we selected the following tools to perform the end to end data replication:

    We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.

    We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.

    In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.

    Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.

    In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!

    See more
    MongoDB logo

    MongoDB

    93.7K
    4.1K
    The database for giant ideas
    93.7K
    4.1K
    PROS OF MONGODB
    • 828
      Document-oriented storage
    • 593
      No sql
    • 553
      Ease of use
    • 464
      Fast
    • 410
      High performance
    • 255
      Free
    • 218
      Open source
    • 180
      Flexible
    • 145
      Replication & high availability
    • 112
      Easy to maintain
    • 42
      Querying
    • 39
      Easy scalability
    • 38
      Auto-sharding
    • 37
      High availability
    • 31
      Map/reduce
    • 27
      Document database
    • 25
      Easy setup
    • 25
      Full index support
    • 16
      Reliable
    • 15
      Fast in-place updates
    • 14
      Agile programming, flexible, fast
    • 12
      No database migrations
    • 8
      Easy integration with Node.Js
    • 8
      Enterprise
    • 6
      Enterprise Support
    • 5
      Great NoSQL DB
    • 4
      Support for many languages through different drivers
    • 3
      Schemaless
    • 3
      Aggregation Framework
    • 3
      Drivers support is good
    • 2
      Fast
    • 2
      Managed service
    • 2
      Easy to Scale
    • 2
      Awesome
    • 2
      Consistent
    • 1
      Good GUI
    • 1
      Acid Compliant
    CONS OF MONGODB
    • 6
      Very slowly for connected models that require joins
    • 3
      Not acid compliant
    • 2
      Proprietary query language

    related MongoDB posts

    Jeyabalaji Subramanian

    Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.

    We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient

    Based on the above criteria, we selected the following tools to perform the end to end data replication:

    We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.

    We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.

    In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.

    Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.

    In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!

    See more
    Robert Zuber

    We use MongoDB as our primary #datastore. Mongo's approach to replica sets enables some fantastic patterns for operations like maintenance, backups, and #ETL.

    As we pull #microservices from our #monolith, we are taking the opportunity to build them with their own datastores using PostgreSQL. We also use Redis to cache data we’d never store permanently, and to rate-limit our requests to partners’ APIs (like GitHub).

    When we’re dealing with large blobs of immutable data (logs, artifacts, and test results), we store them in Amazon S3. We handle any side-effects of S3’s eventual consistency model within our own code. This ensures that we deal with user requests correctly while writes are in process.

    See more
    Redis logo

    Redis

    59.6K
    3.9K
    Open source (BSD licensed), in-memory data structure store
    59.6K
    3.9K
    PROS OF REDIS
    • 887
      Performance
    • 542
      Super fast
    • 514
      Ease of use
    • 444
      In-memory cache
    • 324
      Advanced key-value cache
    • 194
      Open source
    • 182
      Easy to deploy
    • 165
      Stable
    • 156
      Free
    • 121
      Fast
    • 42
      High-Performance
    • 40
      High Availability
    • 35
      Data Structures
    • 32
      Very Scalable
    • 24
      Replication
    • 23
      Pub/Sub
    • 22
      Great community
    • 19
      "NoSQL" key-value data store
    • 16
      Hashes
    • 13
      Sets
    • 11
      Sorted Sets
    • 10
      Lists
    • 10
      NoSQL
    • 9
      Async replication
    • 9
      BSD licensed
    • 8
      Integrates super easy with Sidekiq for Rails background
    • 8
      Bitmaps
    • 7
      Open Source
    • 7
      Keys with a limited time-to-live
    • 6
      Lua scripting
    • 6
      Strings
    • 5
      Awesomeness for Free
    • 5
      Hyperloglogs
    • 4
      Runs server side LUA
    • 4
      Transactions
    • 4
      Networked
    • 4
      Outstanding performance
    • 4
      Feature Rich
    • 4
      Written in ANSI C
    • 4
      LRU eviction of keys
    • 3
      Data structure server
    • 3
      Performance & ease of use
    • 2
      Temporarily kept on disk
    • 2
      Dont save data if no subscribers are found
    • 2
      Automatic failover
    • 2
      Easy to use
    • 2
      Scalable
    • 2
      Channels concept
    • 2
      Object [key/value] size each 500 MB
    • 2
      Existing Laravel Integration
    • 2
      Simple
    CONS OF REDIS
    • 15
      Cannot query objects directly
    • 3
      No secondary indexes for non-numeric data types
    • 1
      No WAL

    related Redis posts

    Russel Werner
    Lead Engineer at StackShare · | 32 upvotes · 2.8M views

    StackShare Feed is built entirely with React, Glamorous, and Apollo. One of our objectives with the public launch of the Feed was to enable a Server-side rendered (SSR) experience for our organic search traffic. When you visit the StackShare Feed, and you aren't logged in, you are delivered the Trending feed experience. We use an in-house Node.js rendering microservice to generate this HTML. This microservice needs to run and serve requests independent of our Rails web app. Up until recently, we had a mono-repo with our Rails and React code living happily together and all served from the same web process. In order to deploy our SSR app into a Heroku environment, we needed to split out our front-end application into a separate repo in GitHub. The driving factor in this decision was mostly due to limitations imposed by Heroku specifically with how processes can't communicate with each other. A new SSR app was created in Heroku and linked directly to the frontend repo so it stays in-sync with changes.

    Related to this, we need a way to "deploy" our frontend changes to various server environments without building & releasing the entire Ruby application. We built a hybrid Amazon S3 Amazon CloudFront solution to host our Webpack bundles. A new CircleCI script builds the bundles and uploads them to S3. The final step in our rollout is to update some keys in Redis so our Rails app knows which bundles to serve. The result of these efforts were significant. Our frontend team now moves independently of our backend team, our build & release process takes only a few minutes, we are now using an edge CDN to serve JS assets, and we have pre-rendered React pages!

    #StackDecisionsLaunch #SSR #Microservices #FrontEndRepoSplit

    See more
    Simon Reymann
    Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 11.6M views

    Our whole DevOps stack consists of the following tools:

    • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
    • Respectively Git as revision control system
    • SourceTree as Git GUI
    • Visual Studio Code as IDE
    • CircleCI for continuous integration (automatize development process)
    • Prettier / TSLint / ESLint as code linter
    • SonarQube as quality gate
    • Docker as container management (incl. Docker Compose for multi-container application management)
    • VirtualBox for operating system simulation tests
    • Kubernetes as cluster management for docker containers
    • Heroku for deploying in test environments
    • nginx as web server (preferably used as facade server in production environment)
    • SSLMate (using OpenSSL) for certificate management
    • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
    • PostgreSQL as preferred database system
    • Redis as preferred in-memory database/store (great for caching)

    The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

    • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
    • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
    • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
    • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
    • Scalability: All-in-one framework for distributed systems.
    • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
    See more
    Amazon S3 logo

    Amazon S3

    53.3K
    2K
    Store and retrieve any amount of data, at any time, from anywhere on the web
    53.3K
    2K
    PROS OF AMAZON S3
    • 590
      Reliable
    • 492
      Scalable
    • 456
      Cheap
    • 329
      Simple & easy
    • 83
      Many sdks
    • 30
      Logical
    • 13
      Easy Setup
    • 11
      REST API
    • 11
      1000+ POPs
    • 6
      Secure
    • 4
      Easy
    • 4
      Plug and play
    • 3
      Web UI for uploading files
    • 2
      Faster on response
    • 2
      Flexible
    • 2
      GDPR ready
    • 1
      Easy to use
    • 1
      Plug-gable
    • 1
      Easy integration with CloudFront
    CONS OF AMAZON S3
    • 7
      Permissions take some time to get right
    • 6
      Requires a credit card
    • 6
      Takes time/work to organize buckets & folders properly
    • 3
      Complex to set up

    related Amazon S3 posts

    Ashish Singh
    Tech Lead, Big Data Platform at Pinterest · | 38 upvotes · 3.3M views

    To provide employees with the critical need of interactive querying, we’ve worked with Presto, an open-source distributed SQL query engine, over the years. Operating Presto at Pinterest’s scale has involved resolving quite a few challenges like, supporting deeply nested and huge thrift schemas, slow/ bad worker detection and remediation, auto-scaling cluster, graceful cluster shutdown and impersonation support for ldap authenticator.

    Our infrastructure is built on top of Amazon EC2 and we leverage Amazon S3 for storing our data. This separates compute and storage layers, and allows multiple compute clusters to share the S3 data.

    We have hundreds of petabytes of data and tens of thousands of Apache Hive tables. Our Presto clusters are comprised of a fleet of 450 r4.8xl EC2 instances. Presto clusters together have over 100 TBs of memory and 14K vcpu cores. Within Pinterest, we have close to more than 1,000 monthly active users (out of total 1,600+ Pinterest employees) using Presto, who run about 400K queries on these clusters per month.

    Each query submitted to Presto cluster is logged to a Kafka topic via Singer. Singer is a logging agent built at Pinterest and we talked about it in a previous post. Each query is logged when it is submitted and when it finishes. When a Presto cluster crashes, we will have query submitted events without corresponding query finished events. These events enable us to capture the effect of cluster crashes over time.

    Each Presto cluster at Pinterest has workers on a mix of dedicated AWS EC2 instances and Kubernetes pods. Kubernetes platform provides us with the capability to add and remove workers from a Presto cluster very quickly. The best-case latency on bringing up a new worker on Kubernetes is less than a minute. However, when the Kubernetes cluster itself is out of resources and needs to scale up, it can take up to ten minutes. Some other advantages of deploying on Kubernetes platform is that our Presto deployment becomes agnostic of cloud vendor, instance types, OS, etc.

    #BigData #AWS #DataScience #DataEngineering

    See more
    Russel Werner
    Lead Engineer at StackShare · | 32 upvotes · 2.8M views

    StackShare Feed is built entirely with React, Glamorous, and Apollo. One of our objectives with the public launch of the Feed was to enable a Server-side rendered (SSR) experience for our organic search traffic. When you visit the StackShare Feed, and you aren't logged in, you are delivered the Trending feed experience. We use an in-house Node.js rendering microservice to generate this HTML. This microservice needs to run and serve requests independent of our Rails web app. Up until recently, we had a mono-repo with our Rails and React code living happily together and all served from the same web process. In order to deploy our SSR app into a Heroku environment, we needed to split out our front-end application into a separate repo in GitHub. The driving factor in this decision was mostly due to limitations imposed by Heroku specifically with how processes can't communicate with each other. A new SSR app was created in Heroku and linked directly to the frontend repo so it stays in-sync with changes.

    Related to this, we need a way to "deploy" our frontend changes to various server environments without building & releasing the entire Ruby application. We built a hybrid Amazon S3 Amazon CloudFront solution to host our Webpack bundles. A new CircleCI script builds the bundles and uploads them to S3. The final step in our rollout is to update some keys in Redis so our Rails app knows which bundles to serve. The result of these efforts were significant. Our frontend team now moves independently of our backend team, our build & release process takes only a few minutes, we are now using an edge CDN to serve JS assets, and we have pre-rendered React pages!

    #StackDecisionsLaunch #SSR #Microservices #FrontEndRepoSplit

    See more
    GitHub Actions logo

    GitHub Actions

    23.6K
    27
    Automate your workflow from idea to production
    23.6K
    27
    PROS OF GITHUB ACTIONS
    • 8
      Integration with GitHub
    • 5
      Free
    • 3
      Easy to duplicate a workflow
    • 3
      Ready actions in Marketplace
    • 2
      Configs stored in .github
    • 2
      Docker Support
    • 2
      Read actions in Marketplace
    • 1
      Active Development Roadmap
    • 1
      Fast
    CONS OF GITHUB ACTIONS
    • 5
      Lacking [skip ci]
    • 4
      Lacking allow failure
    • 3
      Lacking job specific badges
    • 2
      No ssh login to servers
    • 1
      No Deployment Projects
    • 1
      No manual launch

    related GitHub Actions posts

    Somnath Mahale
    Engineering Leader at Altimetrik Corp. · | 8 upvotes · 1.8M views

    I am in the process of evaluating CircleCI, Drone.io, and Github Actions to cover my #CI/ CD needs. I would appreciate your advice on comparative study w.r.t. attributes like language-Inclusive support, code-base integration, performance, cost, maintenance, support, ease of use, ability to deal with big projects, etc. based on actual industry experience.

    Thanks in advance!

    See more
    Shubham Chadokar
    Software Engineer Specialist at Kaleyra · | 6 upvotes · 127.1K views

    I have created a SaaS application. 1 backend service and 2 frontend services, all 3 run on different ports. I am using Amazon ECR images to deploy them on the EC2 server. My code is on GitHub. I want to automate this deployment process. How can I do this, and What tech stack should I use? It should be in sync with what I am currently using. On merge to master, it should build push the image to ECR and then later deploy again in the EC2 with the latest image. Maybe GitHub Actions or AWS CodePipeline would be ideal. Thanks, Shubham

    See more