What is GridDB and what are its top alternatives?
Top Alternatives to GridDB
- InfluxDB
InfluxDB is a scalable datastore for metrics, events, and real-time analytics. It has a built-in HTTP API so you don't have to write any server side code to get up and running. InfluxDB is designed to be scalable, simple to install and manage, and fast to get data in and out. ...
- Cassandra
Partitioning means that Cassandra can distribute your data across multiple machines in an application-transparent matter. Cassandra will automatically repartition as machines are added and removed from the cluster. Row store means that like relational databases, Cassandra organizes data by rows and columns. The Cassandra Query Language (CQL) is a close relative of SQL. ...
- MongoDB
MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding. ...
- Redis
Redis is an open source (BSD licensed), in-memory data structure store, used as a database, cache, and message broker. Redis provides data structures such as strings, hashes, lists, sets, sorted sets with range queries, bitmaps, hyperloglogs, geospatial indexes, and streams. ...
- Hazelcast
With its various distributed data structures, distributed caching capabilities, elastic nature, memcache support, integration with Spring and Hibernate and more importantly with so many happy users, Hazelcast is feature-rich, enterprise-ready and developer-friendly in-memory data grid solution. ...
- Aerospike
Aerospike is an open-source, modern database built from the ground up to push the limits of flash storage, processors and networks. It was designed to operate with predictable low latency at high throughput with uncompromising reliability – both high availability and ACID guarantees. ...
- SAP HANA
It is an application that uses in-memory database technology that allows the processing of massive amounts of real-time data in a short time. The in-memory computing engine allows it to process data stored in RAM as opposed to reading it from a disk. ...
- MemSQL
MemSQL converges transactions and analytics for sub-second data processing and reporting. Real-time businesses can build robust applications on a simple and scalable infrastructure that complements and extends existing data pipelines. ...
GridDB alternatives & related posts
InfluxDB
- Time-series data analysis53
- Easy setup, no dependencies29
- Fast, scalable & open source24
- Open source21
- Real-time analytics19
- Continuous Query support6
- Easy Query Language5
- HTTP API4
- Out-of-the-box, automatic Retention Policy4
- Offers Enterprise version1
- Free Open Source version1
- Instability4
- HA or Clustering is only in paid version1
related InfluxDB posts
Hi everyone. I'm trying to create my personal syslog monitoring.
To get the logs, I have uncertainty to choose the way: 1.1 Use Logstash like a TCP server. 1.2 Implement a Go TCP server.
To store and plot data. 2.1 Use Elasticsearch tools. 2.2 Use InfluxDB and Grafana.
I would like to know... Which is a cheaper and scalable solution?
Or even if there is a better way to do it.
Cassandra
- Distributed115
- High performance95
- High availability80
- Easy scalability74
- Replication52
- Multi datacenter deployments26
- Reliable26
- OLTP9
- Open source7
- Schema optional7
- Workload separation (via MDC)2
- Fast1
- Reliability of replication3
- Updates1
related Cassandra posts
1.0 of Stream leveraged Cassandra for storing the feed. Cassandra is a common choice for building feeds. Instagram, for instance started, out with Redis but eventually switched to Cassandra to handle their rapid usage growth. Cassandra can handle write heavy workloads very efficiently.
Cassandra is a great tool that allows you to scale write capacity simply by adding more nodes, though it is also very complex. This complexity made it hard to diagnose performance fluctuations. Even though we had years of experience with running Cassandra, it still felt like a bit of a black box. When building Stream 2.0 we decided to go for a different approach and build Keevo. Keevo is our in-house key-value store built upon RocksDB, gRPC and Raft.
RocksDB is a highly performant embeddable database library developed and maintained by Facebook’s data engineering team. RocksDB started as a fork of Google’s LevelDB that introduced several performance improvements for SSD. Nowadays RocksDB is a project on its own and is under active development. It is written in C++ and it’s fast. Have a look at how this benchmark handles 7 million QPS. In terms of technology it’s much more simple than Cassandra.
This translates into reduced maintenance overhead, improved performance and, most importantly, more consistent performance. It’s interesting to note that LinkedIn also uses RocksDB for their feed.
#InMemoryDatabases #DataStores #Databases
Developing a solution that collects Telemetry Data from different devices, nearly 1000 devices minimum and maximum 12000. Each device is sending 2 packets in 1 second. This is time-series data, and this data definition and different reports are saved on PostgreSQL. Like Building information, maintenance records, etc. I want to know about the best solution. This data is required for Math and ML to run different algorithms. Also, data is raw without definitions and information stored in PostgreSQL. Initially, I went with TimescaleDB due to PostgreSQL support, but to increase in sites, I started facing many issues with timescale DB in terms of flexibility of storing data.
My major requirement is also the replication of the database for reporting and different purposes. You may also suggest other options other than Druid and Cassandra. But an open source solution is appreciated.
- Document-oriented storage828
- No sql593
- Ease of use549
- Fast465
- High performance408
- Free256
- Open source215
- Flexible180
- Replication & high availability143
- Easy to maintain110
- Querying42
- Easy scalability38
- Auto-sharding37
- High availability36
- Map/reduce31
- Document database27
- Full index support25
- Easy setup25
- Reliable16
- Fast in-place updates15
- Agile programming, flexible, fast14
- No database migrations12
- Easy integration with Node.Js8
- Enterprise8
- Enterprise Support6
- Great NoSQL DB5
- Drivers support is good3
- Aggregation Framework3
- Support for many languages through different drivers3
- Awesome2
- Schemaless2
- Managed service2
- Fast2
- Easy to Scale2
- Consistent1
- Acid Compliant1
- Very slowly for connected models that require joins6
- Not acid compliant3
- Proprietary query language1
related MongoDB posts









Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.
We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient
Based on the above criteria, we selected the following tools to perform the end to end data replication:
We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.
We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.
In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.
Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.
In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!
We use MongoDB as our primary #datastore. Mongo's approach to replica sets enables some fantastic patterns for operations like maintenance, backups, and #ETL.
As we pull #microservices from our #monolith, we are taking the opportunity to build them with their own datastores using PostgreSQL. We also use Redis to cache data we’d never store permanently, and to rate-limit our requests to partners’ APIs (like GitHub).
When we’re dealing with large blobs of immutable data (logs, artifacts, and test results), we store them in Amazon S3. We handle any side-effects of S3’s eventual consistency model within our own code. This ensures that we deal with user requests correctly while writes are in process.
- Performance879
- Super fast536
- Ease of use511
- In-memory cache441
- Advanced key-value cache321
- Open source190
- Easy to deploy179
- Stable163
- Free152
- Fast120
- High-Performance40
- High Availability39
- Data Structures34
- Very Scalable32
- Replication23
- Great community20
- Pub/Sub19
- "NoSQL" key-value data store17
- Hashes14
- Sets12
- Sorted Sets10
- Lists9
- BSD licensed8
- NoSQL8
- Async replication7
- Integrates super easy with Sidekiq for Rails background7
- Bitmaps7
- Open Source6
- Keys with a limited time-to-live6
- Strings5
- Lua scripting5
- Awesomeness for Free!4
- Hyperloglogs4
- outstanding performance3
- Runs server side LUA3
- Networked3
- LRU eviction of keys3
- Written in ANSI C3
- Feature Rich3
- Transactions3
- Data structure server2
- Performance & ease of use2
- Existing Laravel Integration1
- Automatic failover1
- Easy to use1
- Object [key/value] size each 500 MB1
- Simple1
- Channels concept1
- Scalable1
- Temporarily kept on disk1
- Dont save data if no subscribers are found1
- Jk0
- Cannot query objects directly14
- No secondary indexes for non-numeric data types2
- No WAL1
related Redis posts
We use MongoDB as our primary #datastore. Mongo's approach to replica sets enables some fantastic patterns for operations like maintenance, backups, and #ETL.
As we pull #microservices from our #monolith, we are taking the opportunity to build them with their own datastores using PostgreSQL. We also use Redis to cache data we’d never store permanently, and to rate-limit our requests to partners’ APIs (like GitHub).
When we’re dealing with large blobs of immutable data (logs, artifacts, and test results), we store them in Amazon S3. We handle any side-effects of S3’s eventual consistency model within our own code. This ensures that we deal with user requests correctly while writes are in process.
















I'm working as one of the engineering leads in RunaHR. As our platform is a Saas, we thought It'd be good to have an API (We chose Ruby and Rails for this) and a SPA (built with React and Redux ) connected. We started the SPA with Create React App since It's pretty easy to start.
We use Jest as the testing framework and react-testing-library to test React components. In Rails we make tests using RSpec.
Our main database is PostgreSQL, but we also use MongoDB to store some type of data. We started to use Redis for cache and other time sensitive operations.
We have a couple of extra projects: One is an Employee app built with React Native and the other is an internal back office dashboard built with Next.js for the client and Python in the backend side.
Since we have different frontend apps we have found useful to have Bit to document visual components and utils in JavaScript.
- High Availibility10
- Distributed Locking6
- Distributed compute5
- Sharding5
- Load balancing4
- Sql query support in cluster wide3
- Map-reduce functionality3
- Written in java. runs on jvm3
- Publish-subscribe3
- Performance2
- Simple-to-use2
- Multiple client language support2
- Rest interface2
- Optimis locking for map2
- Super Fast1
- Admin Interface (Management Center)1
- Better Documentation1
- Easy to use1
- License needed for SSL3
related Hazelcast posts
- Ram and/or ssd persistence15
- Easy clustering support12
- Easy setup5
- Acid4
- Scale3
- Performance better than Redis3
- Petabyte Scale3
- Ease of use2
related Aerospike posts
- In-memory5
- SQL5
- Distributed4
- Performance4
- Realtime2
- Concurrent2
- OLAP2
- OLTP2
- JSON1
related SAP HANA posts
Hi. We are planning to develop web, desktop, and mobile app for procurement, logistics, and contracts. Procure to Pay and Source to pay, spend management, supplier management, catalog management. ( similar to SAP Ariba, gap.com, coupa.com, ivalua.com vroozi.com, procurify.com
We got stuck when deciding which technology stack is good for the future. We look forward to your kind guidance that will help us.
We want to integrate with multiple databases with seamless bidirectional integration. What APIs and middleware available are best to achieve this? SAP HANA, Oracle, MySQL, MongoDB...
ASP.NET / Node.js / Laravel. ......?
Please guide us
- Distributed8
- Realtime4
- JSON3
- Sql3
- Columnstore3
- Concurrent3
- Ultra fast2
- Scalable2
- Pipeline1
- Availability Group1
- S31
- Mixed workload1
- Unlimited Storage Database1